Symmetries of Kadomtsev–Petviashvili equation, isomonodromic deformations, and nonlinear generalizations of the special functions of wave catastrophes
Teoretičeskaâ i matematičeskaâ fizika, Tome 97 (1993) no. 2, pp. 213-226 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A special solution of the Kadomtsev–Petviashvili equation $$u_{tx} + u_{xxxx} + 3u_{yy} + 3(u^2)_{xx} = 0,$$ that is a “nonlinear” analog of the special function of wave catastrophe corresponding to a singularity of swallowtail type is considered. On the basis of a symmetry analysis it is shown that the solution must simultaneously satisfy nonlinear ordinary differential equations with respect to all three independent variables. After “dressing” of the corresponding $\Psi$ function, equations with respect to a spectral parameter arise in a regular manner, and this indicates the possibility of applying the method of isomonodromic deformation.
@article{TMF_1993_97_2_a3,
     author = {B. I. Suleimanov and I. T. Habibullin},
     title = {Symmetries of {Kadomtsev{\textendash}Petviashvili} equation, isomonodromic deformations, and nonlinear generalizations of the special functions of wave catastrophes},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {213--226},
     year = {1993},
     volume = {97},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1993_97_2_a3/}
}
TY  - JOUR
AU  - B. I. Suleimanov
AU  - I. T. Habibullin
TI  - Symmetries of Kadomtsev–Petviashvili equation, isomonodromic deformations, and nonlinear generalizations of the special functions of wave catastrophes
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1993
SP  - 213
EP  - 226
VL  - 97
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1993_97_2_a3/
LA  - ru
ID  - TMF_1993_97_2_a3
ER  - 
%0 Journal Article
%A B. I. Suleimanov
%A I. T. Habibullin
%T Symmetries of Kadomtsev–Petviashvili equation, isomonodromic deformations, and nonlinear generalizations of the special functions of wave catastrophes
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1993
%P 213-226
%V 97
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1993_97_2_a3/
%G ru
%F TMF_1993_97_2_a3
B. I. Suleimanov; I. T. Habibullin. Symmetries of Kadomtsev–Petviashvili equation, isomonodromic deformations, and nonlinear generalizations of the special functions of wave catastrophes. Teoretičeskaâ i matematičeskaâ fizika, Tome 97 (1993) no. 2, pp. 213-226. http://geodesic.mathdoc.fr/item/TMF_1993_97_2_a3/

[1] Maslov V. P., Fedoryuk M. V., Kvaziklassicheskoe priblizhenie dlya uravnenii kvantovoi mekhaniki, Nauka, M., 1976 | MR

[2] Fedoryuk M. V., Asimptotika, integraly i ryady, Nauka, M., 1987 | MR

[3] Lukin D. S., Palkin E. A., Chislennyi kanonicheskii metod v zadachakh difraktsii i rasprostraneniya elektromagnitnykh voln v neodnorodnykh sredakh, MFTI, M., 1982 | MR

[4] Giiemin B. C., Sternberg Sh. S., Geometricheskie asimptotiki, Mir, M., 1980 | MR

[5] Arnold V. I., Varchenko A. N., Gusein-Zade S. M., Osobennosti differentsiruemykh otobrazhenii, Nauka, M., 1982 | MR

[6] Smith R., J. Fluid Mech., 77 (1976), 417–432 | DOI | MR

[7] Manukyan S. M., Prikl. mat. i mekh., 45:1 (1981), 95–105 | MR

[8] Pereskokov A. V., Mat. zametki, 44:1 (1988), 149–152 | MR | Zbl

[9] Ablowitz M. J., Segur H., Physica. D3, 1981, no. 1–2, 165–184 | Zbl

[10] Ostrovskii L. A., Fenomenologicheskaya teoriya voln konechnoi amplitudy v tverdykh telakh, preprint Instituta fiziki metallov UNTs AN SSSR, Sverdlovsk, 1975

[11] Peregrin D. H., Smith R., Philos. Trans. Roy. Soc. London. A, 292 (1979), 341–370 | DOI | Zbl

[12] Haberman R., Sun R., Studies in Appl. Math., LXII:1 (1985), 1–38 | DOI | MR

[13] Garnier R., Annale sscientifiques de l'Ecole Normale Superrieure, 29 (1912), 1–313 | DOI | MR

[14] Its A. R., Novokschonov W. Y., “The Isomonodromic Deformation Method in the Theory of Painleve Equations”, Lecture Notes in Mathemathics, 29, 1986, 1–126 | DOI | MR

[15] Suleimanov B. I., Diff. uravn., 23:5 (1987), 834–842 | MR | Zbl

[16] Its A. R., Kapaev A. A., Izv. AN SSSR. Ser. matem., 51:4 (1987), 878–892 | MR | Zbl

[17] Jimbo M., “Monodromy problem and the boundary conditioner some Painleve equations”, Publ. RIMS. Kyoto Univ., 18:3 (1982), 1137–1161 | DOI | MR | Zbl

[18] Novokshenov V. Yu., Funkts. analiz i ego prilozh., 18:3 (1984), 90–91 | MR | Zbl

[19] Suleimanov B. I., “Asimptotika pri $t\to\infty$ odnogo izomonodromnogo resheniya nelineinogo uravneniya Shredingera”, Zadachi matematicheskoi fiziki i asimptotika ikh reshenii, Ufa, 1991, 33–49

[20] Its A. R., Izv. AN SSSR. Ser. matem., 49:3 (1985), 530–565 | MR | Zbl

[21] Zakharov V. E., Shabat A. B., ZhETF, 61:1 (1972), 118–134 | MR

[22] Suleimanov B. I., Dokl. RAN, 326:1 (1992), 40–44 | MR | Zbl

[23] Kitaev A. V., “Tochki povorota lineinykh sistem i dvoinye asimptotiki transtsendentov Penleve”, Zap. nauchn. semin. LOMI, 187, 1991, 53–74 | MR

[24] Orlov A. Yu., Shulman V. I., TMF, 64:2 (1985), 323–328 | MR | Zbl

[25] Zakharov V. E., Manakov S. V., “Mnogomernye integriruemye uravneniya i metody postroeniya ikh reshenii”, Zap. nauchn. semin. LOMI, 133, 1984, 77–91 | MR | Zbl

[26] Ablowitz M. J., Fokas A. S., Lectures on the Inverse Scatterinq Transform for Multidimensional $(2+1)$ Problems, INS No 28 preprint, INS, New York, 1982 | MR

[27] Chen H. H., Lee Y. C., Lin J. E., Phys. D, 9:3 (1983), 439–445 | DOI | MR | Zbl

[28] Chen H. H., Lee Y. C., Zhu G. C., Symmetries and Lie algebra for the Kadomtsev–Petviashvili equation, Plasma preprint UMPLF 85-016, University of Marylend, Marylend, 1984 | MR

[29] Orlov A. Yu., Shulman V. I., Dopolnitelnye simmetrii dvumernykh integriruemykh sistem, preprint IAiE No 277, IAiE, Novosibirsk., 1984

[30] Finikov S. P., Metod vneshnikh form Kartana, OGIZ, M., L., 1948 | MR | Zbl

[31] Zakharov V. E., Shabat A. B., Funkts. analiz i ego prilozh., 13:1 (1979), 13–22 | MR | Zbl

[32] Dryuma V. S., Pisma v ZhETF, 19 (1974), 753–757

[33] Flaschka H., J. Math. Phys., 21:5 (1980), 1016–1018 | DOI | MR | Zbl

[34] Vazov V., Asimptoticheskie razlozheniya reshenii obyknovennykh differentsialnykh uravnenii, Mir, M., 1968

[35] Krichever I. M., Funkts. analiz i ego prilozh., 14:3 (1980), 83–84 | MR | Zbl

[36] Suleimanov B. I., Mat. zametki, 52:5 (1992), 102–106 | MR | Zbl

[37] Khabibullin I. T., Shagalov A. G., TMF, 83:3 (1990), 323–333 | MR