Shock waves in one-dimensional models with cubic nonlinearity
Teoretičeskaâ i matematičeskaâ fizika, Tome 97 (1993) no. 2, pp. 191-212 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Shock waves are described qualitatively for a class of one-dimensional models with cubic nonlinearity (of the type of the modified Korteweg–de Vries equation): $u_t-6u^2u_x+\gamma u_{xxx}=\nu u_{xx}$. Both the integrable and the nonintegrable case are considered. The behavior of a shock wave in the limit $t \to \infty$ is considered.
@article{TMF_1993_97_2_a2,
     author = {R. F. Bikbaev},
     title = {Shock waves in one-dimensional models with cubic nonlinearity},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {191--212},
     year = {1993},
     volume = {97},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1993_97_2_a2/}
}
TY  - JOUR
AU  - R. F. Bikbaev
TI  - Shock waves in one-dimensional models with cubic nonlinearity
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1993
SP  - 191
EP  - 212
VL  - 97
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1993_97_2_a2/
LA  - ru
ID  - TMF_1993_97_2_a2
ER  - 
%0 Journal Article
%A R. F. Bikbaev
%T Shock waves in one-dimensional models with cubic nonlinearity
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1993
%P 191-212
%V 97
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1993_97_2_a2/
%G ru
%F TMF_1993_97_2_a2
R. F. Bikbaev. Shock waves in one-dimensional models with cubic nonlinearity. Teoretičeskaâ i matematičeskaâ fizika, Tome 97 (1993) no. 2, pp. 191-212. http://geodesic.mathdoc.fr/item/TMF_1993_97_2_a2/

[1] Rozhdestvenskii B. L., Yanenko N. N., Sistemy kvazilineinykh uravnenii, Nauka, M., 1978 | MR | Zbl

[2] Uizem Dzh., Lineinye i nelineinye volny, Mir, M., 1977 | MR

[3] Ilin A. M., Oleinik O. A., Matem. sb., 51 (1960), 191–216 | MR | Zbl

[4] S. P. Novikov (red.), Teoriya solitonov, Nauka, M., 1980 | MR

[5] Bikbaev R. F., Zap. nauchn. semin. LOMI, 199, 1992, 33–39

[6] Bikbaev R. F., Zap. nauchn. semin. LOMI, 199, 1992, 20–32

[7] Karpman B. I., Nelineinye volny v dispergiruyuschikh sredakh, Nauka, M., 1973 | MR

[8] Naumkin P. I., Shishmarev I. A., Vestn. MGU. Ser. fizika, 31:6 (1990), 3–17 | MR

[9] Feinman R., Statisticheskaya mekhanika, Mir, M., 1978

[10] Zeldovich Ya. B., Barenblatt G. I., Prikl. matem. i mekh., 21:6 (1957), 856–859 | MR

[11] Chanteur C., Raadu M., Phys. Fluids, 30 (1987), 2708–2719 | DOI | Zbl

[12] Kotlyarov V. P., Doktorskaya diss., Kharkov, 1991

[13] Bikbaev R. F., Phys. Lett. A, 141 (1989), 289–293 | DOI | MR

[14] Bikbaev R. F., Algebra i analiz, 2 (1990), 131–143 ; 5:4 (1993), 67–82 | MR | MR | Zbl

[15] Bikbaev R. F., TMF, 63:3 (1985), 377–387 | MR

[16] Bikbaev R. F., Its A. R., Matem. zametki, 45:5 (1989), 3–9 | MR | Zbl

[17] Fay J., “Theta-functions on Riemann surfaces”, Lecture Notes in Math., 352, 1973 | DOI | MR | Zbl

[18] Bikbaev R. F., Zap. nauchn. semin. LOMI, 180, 1990, 23–35 | MR