Elements of stochastic analysis for the case of Grassmann variables. II. Stochastic partial differential equations for Grassmann processes
Teoretičeskaâ i matematičeskaâ fizika, Tome 97 (1993) no. 2, pp. 182-190 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper is the second part of a study of the analogs of certain objects of classical stochastic analysis. A solution of a stochastic differential equation for Grassmann random processes is constructed as functional of a smoothed Wiener process.
@article{TMF_1993_97_2_a1,
     author = {V. V. Shcherbakov},
     title = {Elements of stochastic analysis for the case of {Grassmann} {variables.~II.~Stochastic} partial differential equations for {Grassmann} processes},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {182--190},
     year = {1993},
     volume = {97},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1993_97_2_a1/}
}
TY  - JOUR
AU  - V. V. Shcherbakov
TI  - Elements of stochastic analysis for the case of Grassmann variables. II. Stochastic partial differential equations for Grassmann processes
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1993
SP  - 182
EP  - 190
VL  - 97
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1993_97_2_a1/
LA  - ru
ID  - TMF_1993_97_2_a1
ER  - 
%0 Journal Article
%A V. V. Shcherbakov
%T Elements of stochastic analysis for the case of Grassmann variables. II. Stochastic partial differential equations for Grassmann processes
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1993
%P 182-190
%V 97
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1993_97_2_a1/
%G ru
%F TMF_1993_97_2_a1
V. V. Shcherbakov. Elements of stochastic analysis for the case of Grassmann variables. II. Stochastic partial differential equations for Grassmann processes. Teoretičeskaâ i matematičeskaâ fizika, Tome 97 (1993) no. 2, pp. 182-190. http://geodesic.mathdoc.fr/item/TMF_1993_97_2_a1/

[1] Scherbakov V. V., “Elementy stokhasticheskogo analiza dlya sluchaya grassmanovykh peremennykh. I. Grassmanovy stokhasticheskie integraly i sluchainye protsessy”, TMF, 96:1 (1993), 23–36 | MR | Zbl

[2] Ignatyuk I. A., Malyshev V. A., Sidoravichyus V., “Skhodimost metoda stokhasticheskogo kvantovaniya”, Teor. ver. i ee prim., 37:4 (1992), 621–647 | MR | Zbl

[3] Doering C. R., “Nonlinear parabolic stochastic differential equations with additive colored noise on $\mathbf R^d\times\mathbf R_+$: a regulated stochastic quantization”, Comm. Math. Phys., 109:4 (1987), 537–561 | DOI | MR | Zbl

[4] Malyshev V. A., “Ultrafioletovye problemy v teorii polya i mnogomasshtabnye razlozheniya”, Itogi nauki i tekhniki. Ser.teoriya veroyatnostei, 24, 1986, 111–181

[5] Gawendzki K., Kupianen A., Gross-Neveu model through convergent perturbation expansions, preprint Univ. Helsinki, 1985 | MR