@article{TMF_1993_97_2_a1,
author = {V. V. Shcherbakov},
title = {Elements of stochastic analysis for the case of {Grassmann} {variables.~II.~Stochastic} partial differential equations for {Grassmann} processes},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {182--190},
year = {1993},
volume = {97},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1993_97_2_a1/}
}
TY - JOUR AU - V. V. Shcherbakov TI - Elements of stochastic analysis for the case of Grassmann variables. II. Stochastic partial differential equations for Grassmann processes JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1993 SP - 182 EP - 190 VL - 97 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_1993_97_2_a1/ LA - ru ID - TMF_1993_97_2_a1 ER -
%0 Journal Article %A V. V. Shcherbakov %T Elements of stochastic analysis for the case of Grassmann variables. II. Stochastic partial differential equations for Grassmann processes %J Teoretičeskaâ i matematičeskaâ fizika %D 1993 %P 182-190 %V 97 %N 2 %U http://geodesic.mathdoc.fr/item/TMF_1993_97_2_a1/ %G ru %F TMF_1993_97_2_a1
V. V. Shcherbakov. Elements of stochastic analysis for the case of Grassmann variables. II. Stochastic partial differential equations for Grassmann processes. Teoretičeskaâ i matematičeskaâ fizika, Tome 97 (1993) no. 2, pp. 182-190. http://geodesic.mathdoc.fr/item/TMF_1993_97_2_a1/
[1] Scherbakov V. V., “Elementy stokhasticheskogo analiza dlya sluchaya grassmanovykh peremennykh. I. Grassmanovy stokhasticheskie integraly i sluchainye protsessy”, TMF, 96:1 (1993), 23–36 | MR | Zbl
[2] Ignatyuk I. A., Malyshev V. A., Sidoravichyus V., “Skhodimost metoda stokhasticheskogo kvantovaniya”, Teor. ver. i ee prim., 37:4 (1992), 621–647 | MR | Zbl
[3] Doering C. R., “Nonlinear parabolic stochastic differential equations with additive colored noise on $\mathbf R^d\times\mathbf R_+$: a regulated stochastic quantization”, Comm. Math. Phys., 109:4 (1987), 537–561 | DOI | MR | Zbl
[4] Malyshev V. A., “Ultrafioletovye problemy v teorii polya i mnogomasshtabnye razlozheniya”, Itogi nauki i tekhniki. Ser.teoriya veroyatnostei, 24, 1986, 111–181
[5] Gawendzki K., Kupianen A., Gross-Neveu model through convergent perturbation expansions, preprint Univ. Helsinki, 1985 | MR