Algebraic version of extension theory for a~quantum system with internal structure
Teoretičeskaâ i matematičeskaâ fizika, Tome 97 (1993) no. 2, pp. 163-181
Voir la notice de l'article provenant de la source Math-Net.Ru
An explicit two-channel matrix representation is obtained for the Hamiltonians of systems with internal structure in the framework of the theory of extensions of symmetric operators. Generalized potentials that are equivalent to zero-range interactions with internal structure and automatically reproduce the boundary conditions that correspond to them as $x \to 0$ are constructed.
@article{TMF_1993_97_2_a0,
author = {A. K. Motovilov},
title = {Algebraic version of extension theory for a~quantum system with internal structure},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {163--181},
publisher = {mathdoc},
volume = {97},
number = {2},
year = {1993},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1993_97_2_a0/}
}
TY - JOUR AU - A. K. Motovilov TI - Algebraic version of extension theory for a~quantum system with internal structure JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1993 SP - 163 EP - 181 VL - 97 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1993_97_2_a0/ LA - ru ID - TMF_1993_97_2_a0 ER -
A. K. Motovilov. Algebraic version of extension theory for a~quantum system with internal structure. Teoretičeskaâ i matematičeskaâ fizika, Tome 97 (1993) no. 2, pp. 163-181. http://geodesic.mathdoc.fr/item/TMF_1993_97_2_a0/