Quasienergy state bases for multi electron problem in a strong laser field
Teoretičeskaâ i matematičeskaâ fizika, Tome 97 (1993) no. 1, pp. 121-132 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The second-quantization procedure is performed in the basis of quasienergy states, and an expression is obtained for the Green's function of a finite Fermi system. A nonstationary effective potential is constructed in the Hartree–Fock and local-density approximations, and possibilities for using it are discussed.
@article{TMF_1993_97_1_a8,
     author = {P. A. Golovinski},
     title = {Quasienergy state bases for multi electron problem in a~strong laser field},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {121--132},
     year = {1993},
     volume = {97},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1993_97_1_a8/}
}
TY  - JOUR
AU  - P. A. Golovinski
TI  - Quasienergy state bases for multi electron problem in a strong laser field
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1993
SP  - 121
EP  - 132
VL  - 97
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1993_97_1_a8/
LA  - ru
ID  - TMF_1993_97_1_a8
ER  - 
%0 Journal Article
%A P. A. Golovinski
%T Quasienergy state bases for multi electron problem in a strong laser field
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1993
%P 121-132
%V 97
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1993_97_1_a8/
%G ru
%F TMF_1993_97_1_a8
P. A. Golovinski. Quasienergy state bases for multi electron problem in a strong laser field. Teoretičeskaâ i matematičeskaâ fizika, Tome 97 (1993) no. 1, pp. 121-132. http://geodesic.mathdoc.fr/item/TMF_1993_97_1_a8/

[1] Kirzhnits D. A., Polevye metody teorii mnogikh chastits, Gosatomizdat, M., 1963 | MR

[2] Migdal A. B., Teoriya konechnykh fermi sistem i svoistva atomnykh yader, Nauka, M., 1983

[3] March N., Yang U., Sampantkhar S., Problema mnogikh tel v kvantovoi mekhanike, Mir, M., 1969 | MR

[4] Pains D., Problema mnogikh tel, IIL, M., 1963

[5] Kirzhnits D. A., Lozovik Yu. E., Shpatakovskaya G. V., UFN, 117:1 (1975), 3–47 | DOI

[6] Mukhopodhyay G., Lundquist S., J. Phys. B. Atom. Mol. Phys., 12:12 (1979), 1297–1304 | DOI

[7] Comarda H. S., Georgopulos P. D., Phys. Rev. Lett., 50:7 (1983), 492–495 | DOI

[8] Zeldovich Ya. B., UFN, 110 (1973), 139–152 | DOI

[9] Baz A. I., Zeldovich Ya. B., Perelomov A. M., Rasseyanie, reaktsii i raspady v nerelyativistskoi kvantovoi mekhanike, Nauka, M., 1971 | Zbl

[10] Sviridov V. V., DAN SSSR, 274:6 (1984), 1366–1367 | MR

[11] Zon B. A., Sholokhov E. I., ZhETF, 70:3 (1976), 887–898

[12] Gibbs D. V., Termodinamika. Statisticheskaya fizika, Nauka, M., 1982

[13] Landau L. D., Lifshits E. M., Statisticheskaya fizika, ch. 1, Nauka, M., 1976 | MR

[14] Seminozhenko V. P., Phis. Rep., 91:3 (1982), 103–182 | DOI | MR

[15] Pestov E. G., Tr. FIAN, 187, 1988, 60–116

[16] Ritus V. I., Tr. FIAN, 111, 1979, 5–151 | MR

[17] Gitman D. M., Fradkin E. S., Shvartsman Sh. M., Kvantovaya elektrodinamika s nestabilnym vakuumom, Nauka, M., 1991 | MR

[18] Berken Dzh. D., Drell S. D., Relyativistskaya kvantovaya teoriya, Nauka, M., 1978 | MR

[19] Kovarskii V. A., Perelman N. F., ZhETF, 60:2 (1971), 509–516 | MR

[20] Zon B. A., Optika i spektr, 36:5 (1974), 838–844

[21] Delone N. B., Krainov V. P., Atom v silnom svetovom pole, Atomizdat, M., 1978 | MR

[22] Golovinskii P. A., ZhETF, 94:7 (1988), 87–94

[23] Hohenberg P., Kohn W., Phys. Rev. B, 136:3 (1964), 864–871 | DOI | MR

[24] Kohn W., Sham L. J., Phys. Rev., 140:4 (1965), 1133–1138 | DOI | MR

[25] Ekardt W., Phys. Rev. B, 32:4 (1985), 1961–1970 | DOI

[26] Senatore G., Subbaswamy K. R., Phys. Rev. B, 34 (1986), 3619–3628 | DOI

[27] Wendin G., Phys. Rev. Lett., 53 (1984), 724–731 | DOI

[28] Golovinskii P. A., Kiyan I. Yu., UFN, 160:6 (1990), 97–140 | DOI