Asymptotic behavior of solutions of Fokker–Planck equation at large times
Teoretičeskaâ i matematičeskaâ fizika, Tome 97 (1993) no. 1, pp. 113-120 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A study is made of the asymptotic behavior of the fundamental solution of the Fokker–Planck equation in the neighborhood of a singular point of a deterministic system at large and small values of the time, and corresponding estimates are found. It is shown that the presence of multiple eigenvalues of the linearization matrix at the singular point of deterministic systems of equations has a strong influence on the asymptotic behavior of the solutions, at large times.
@article{TMF_1993_97_1_a7,
     author = {M. Kh. Kharrasov},
     title = {Asymptotic behavior of solutions of {Fokker{\textendash}Planck} equation at large times},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {113--120},
     year = {1993},
     volume = {97},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1993_97_1_a7/}
}
TY  - JOUR
AU  - M. Kh. Kharrasov
TI  - Asymptotic behavior of solutions of Fokker–Planck equation at large times
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1993
SP  - 113
EP  - 120
VL  - 97
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1993_97_1_a7/
LA  - ru
ID  - TMF_1993_97_1_a7
ER  - 
%0 Journal Article
%A M. Kh. Kharrasov
%T Asymptotic behavior of solutions of Fokker–Planck equation at large times
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1993
%P 113-120
%V 97
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1993_97_1_a7/
%G ru
%F TMF_1993_97_1_a7
M. Kh. Kharrasov. Asymptotic behavior of solutions of Fokker–Planck equation at large times. Teoretičeskaâ i matematičeskaâ fizika, Tome 97 (1993) no. 1, pp. 113-120. http://geodesic.mathdoc.fr/item/TMF_1993_97_1_a7/

[1] Bogolyubov N. N., Problemy dinamicheskoi teorii v statisticheskoi fizike, Gostekhizdat, M., 1946 | MR

[2] Leontovich M. A., ZhETF, 5:3–4 (1935), 211–231 | Zbl

[3] Klimontovich Yu. L., Turbulentnoe dvizhenie i struktura khaosa, Nauka, M., 1990 | MR

[4] Kvasnikov I. A., Termodinamika i statisticheskaya fizika, MGU, M., 1987 | MR

[5] Kaizer Dzh., Statisticheskaya termodinamika neravnovesnykh protsessov, Mir, M., 1990 | MR

[6] Misra B., Prigogine I., “On the foundation of kinetic theory”, Stochastic nonlinear systems in physics, chemistry and biology, Springer-Verlag, Berlin, Heidelberg, New York, 1981, 2–11 | DOI | MR | Zbl

[7] Khosminskii R. Z., Ustoichivost sistem differentsialnykh uravnenii pri sluchainykh vozmuscheniyakh ikh parametrov, Nauka, M., 1969 | MR

[8] Eidelman S. D., Parabolicheskie sistemy, Nauka, M., 1964 | MR

[9] Svirezhev Yu. M., Nelineinye volny, dissipativnye struktury i katastrofy v ekologii, Nauka, M., 1987 | MR | Zbl

[10] Khaken G., Sinergetika, Mir, M., 1985 | MR

[11] Keizer J., J. Chem. Phys., 64 (1976), 1679–1687 | DOI | MR

[12] Arnold V. I., Obyknovennye differentsialnye uravneniya, Nauka, M., 1975 | MR | Zbl