Logarithmic corrections in a quantization rule. The polaron spectrum
Teoretičeskaâ i matematičeskaâ fizika, Tome 97 (1993) no. 1, pp. 78-93 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A nonlinear integrodifferential equation that arises in polaron theory is considered. The integral nonlinearity is given by a convolution with the Coulomb potential. Radially symmetric solutions are sought. In the semiclassical limit, an equation for the self-consistent potential is found and studied. The potential has a logarithmic singularity at the origin, and also a turning point at 1. The phase shifts at these points are determined. The quantization rule that takes into account the logarithmic corrections gives a simple asymptotic formula for the polaron spectrum. Global semiclassical solutions of the original nonlinear equation are constructed.
@article{TMF_1993_97_1_a5,
     author = {M. V. Karasev and A. V. Pereskokov},
     title = {Logarithmic corrections in a~quantization rule. {The} polaron spectrum},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {78--93},
     year = {1993},
     volume = {97},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1993_97_1_a5/}
}
TY  - JOUR
AU  - M. V. Karasev
AU  - A. V. Pereskokov
TI  - Logarithmic corrections in a quantization rule. The polaron spectrum
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1993
SP  - 78
EP  - 93
VL  - 97
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1993_97_1_a5/
LA  - ru
ID  - TMF_1993_97_1_a5
ER  - 
%0 Journal Article
%A M. V. Karasev
%A A. V. Pereskokov
%T Logarithmic corrections in a quantization rule. The polaron spectrum
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1993
%P 78-93
%V 97
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1993_97_1_a5/
%G ru
%F TMF_1993_97_1_a5
M. V. Karasev; A. V. Pereskokov. Logarithmic corrections in a quantization rule. The polaron spectrum. Teoretičeskaâ i matematičeskaâ fizika, Tome 97 (1993) no. 1, pp. 78-93. http://geodesic.mathdoc.fr/item/TMF_1993_97_1_a5/

[1] Pekar S. I., Issledovaniya po elektronnoi teorii kristallov, Gostekhizdat, M., 1951

[2] Balabaev N. K., Lakhno V. D., O strukture polyarona silnoi svyazi, preprint, NTsBI AN SSSR, Puschino, 1979 | MR

[3] Braun Dzh., Dzhekson A., Nuklon-nuklonnye vzaimodeistviya, Atomizdat, M., 1979

[4] Witten E., Nucl. Phys., B160:1 (1979), 57–115 | DOI | MR

[5] Akhmanov S. A., Zheludev N. I., Spectroscopy of nonlinear optical activity in crystals, World Sci., Singapore, 1984

[6] Lieb E. H., Stud. Appl. Math., 57:2 (1977), 93–105 | DOI | MR | Zbl

[7] Lions P. L., Nonlinear Anal.: Theor., meth. and appl., 4:6 (1980), 1063–1072 | DOI | MR | Zbl

[8] Bongers A., Z. angew. Math. und Mech., 60:7 (1980), 240–242 | MR

[9] Karasev M. V., Maslov V. P., Sovremennye problemy matematiki, 13, VINITI, M., 1979, 145–267 | MR

[10] Bogolyubskaya A. A., Bogolyubskii I. L., TMF, 54:2 (1983), 258–267

[11] Kramers H. A., Z. Physik., 39 (1926), 828–840 | DOI | Zbl

[12] Keller J. B., Ann. Phys., 4:2 (1958), 180–188 | DOI | MR | Zbl

[13] Maslov V. P., Teoriya vozmuschenii i asimptoticheskie metody, MGU, M., 1965 | MR

[14] Freman N., Freman P. U., VKB-priblizhenie, Mir, M., 1967

[15] Langmuir L., Blodgett K., Phys. Rev., 24:1 (1924), 49–59 | DOI

[16] Longer R. E., Phys. Rev., 51 (1937), 669–676 | DOI

[17] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii, t. 2, Nauka, M., 1974 | MR

[18] Chernykh S. I., TMF, 52:3 (1982), 491–494 | MR