Fluctuational theory of media with manifest space-time inhomogeneity
Teoretičeskaâ i matematičeskaâ fizika, Tome 97 (1993) no. 1, pp. 53-67 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A nonlinear determined thermodynamics of media with essential violation of $(\mathbf{r},t)$ homogeneity of intensive variables and their derivatives is constructed. Either equations of the ideal liquids (IL) or ideal liquid with thermal conductivity (ILTC) are taken as balance equations in it. As basis variables, $\mu (\mathbf{r},t)$ and $T(\mathbf{r},t)$ are chosen. The hypothesis of local equilibrium is given in the form of the Gibbs–Duhem relation; conjugate coordinates are $\rho (\mathbf{r},t)$ and $\sigma (\mathbf{r},t)$, and the local potential is $P(\mu ,T)$. The potential of velocities $\nu _i(\mathbf{r},t)$ enters through the substantial derivative. The variational principle is formulated; in the case of the ILTC there naturally occurs a local decrease in the pruduction of entropy $z_2(t)=z_2^0\exp \left (-\frac {2t} {\bar t}\right )$ where $\bar t$ is the relaxation time.
@article{TMF_1993_97_1_a3,
     author = {V. B. Rogankov and V. K. Fedyanin},
     title = {Fluctuational theory of media with manifest space-time inhomogeneity},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {53--67},
     year = {1993},
     volume = {97},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1993_97_1_a3/}
}
TY  - JOUR
AU  - V. B. Rogankov
AU  - V. K. Fedyanin
TI  - Fluctuational theory of media with manifest space-time inhomogeneity
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1993
SP  - 53
EP  - 67
VL  - 97
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1993_97_1_a3/
LA  - ru
ID  - TMF_1993_97_1_a3
ER  - 
%0 Journal Article
%A V. B. Rogankov
%A V. K. Fedyanin
%T Fluctuational theory of media with manifest space-time inhomogeneity
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1993
%P 53-67
%V 97
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1993_97_1_a3/
%G ru
%F TMF_1993_97_1_a3
V. B. Rogankov; V. K. Fedyanin. Fluctuational theory of media with manifest space-time inhomogeneity. Teoretičeskaâ i matematičeskaâ fizika, Tome 97 (1993) no. 1, pp. 53-67. http://geodesic.mathdoc.fr/item/TMF_1993_97_1_a3/

[1] Bogolyubov N. N., Izbrannye trudy po statisticheskoi fizike, MGU, M., 1979 | MR

[2] Zubarev D. N., Morozov V. G., Physica, 120A:3 (1983), 411–467 | DOI | MR

[3] Zubarev D. N., Morozov V. G., Problemy sovremennoi statisticheskoi fiziki, Naukova dumka, Kiev, 1985, 120–128 | MR

[4] Van Saarloos W., Bedeaux D., Mazur P., Physica, 96A:1 (1981), 109–125

[5] Van Saarloos W., Bedeaux D., Mazur P., Physica, 110A:1–2 (1982), 147–170

[6] Rogankov V. B., Acta Phys. Hung., 57:1–2 (1985), 13–30 | MR

[7] Rogankov V. B., DAN SSSR, 289:1 (1986), 141–145

[8] Rogankov V. B., DAN SSSR, 295:3 (1987), 600–605 | MR

[9] Rogankov V. B., Mezey L.-Z., Giber J., Acta Phys. Polon., A66:2 (1984), 119–129 | MR

[10] Glensdorf P., Prigozhii I., Termodinamicheskaya teoriya struktury, ustoichivosti i fluktuatsii, Mir, M., 1973 | MR

[11] Eu B. C., Ann. Phys., 140:2 (1982), 341–371 | DOI | MR | Zbl

[12] Casas-Vazquez J., “Thermodynamic theory of stability”, Lectute Notes in Physics, 164, Springer-Verlag, Berlin, Heidelberg, New York, 1982, 1–40 | DOI | MR

[13] Sieniutycz S., J. Non-Equilib. Therm., 9:1 (1984), 61–70 | Zbl

[14] Balesku R., Ravnovesnaya i neravnovesnaya statisticheskaya mekhanika, Mir, M., 1978 | MR

[15] Grabert H., Green M. S., Phys. Rev., 19A:4 (1979), 1747–1756 | DOI | MR

[16] Grabert H., Graham R., Green M. S., Phys. Rev., 21A:6 (1980), 2136–2145 | DOI | MR

[17] Olkhovskii I. I., Kurs teoreticheskoi mekhaniki dlya fizikov, MGU, M., 1974

[18] Dyarmati I., Neravnovesnaya termodinamika. Teoriya polya i variatsionnye printsipy, Mir, M., 1974

[19] Morozov V. G., TMF, 58:1 (1984), 79–95 | MR

[20] Kronig R., Thellung A., Physica, 18:10 (1952), 749–761 | DOI | MR | Zbl

[21] Thellung A., Physica, 19:2 (1953), 217–226 | DOI | MR | Zbl

[22] Butkovskii A. G., Fazovyi portret upravlyaemykh dinamicheskikh sistem, Mir, M., 1985 | MR

[23] Poston T., Styuart I., Teoriya katastrof i ee prilozheniya, Mir, M., 1980 | MR | Zbl

[24] Ludwig D., SIAM Rev., 17:4 (1975), 605–640 | DOI | MR | Zbl

[25] Maslov V. P., TMF, 69:3 (1986), 361–378 | MR | Zbl