From the Hamiltonian mechanics to a continuous media. Dissipative structures. Criteria of self-organization
Teoretičeskaâ i matematičeskaâ fizika, Tome 96 (1993) no. 3, pp. 385-416 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper is aimed at presenting some main ideas and results of the modern statistical theory of macroscopic open systems.We begin from the demonstration of the necessity and the possibility of the unified description of kinetic, hydrodynamic, and diffusion processes in nonlinear macroscopic open systems based on generalized kinetic equations. A derivation of the generalized kinetic equations is based on the concrete physical definition of continuous media. A “point” of a continuous medium is determined by definition of physically infinitesimal scales. On the same basis, the definition of the Gibbs ensemble for nonequlibrium process is given. The Boltzmann gas and a fully ionized plasma as the test systems are used. For the transition from the reversible Hamilton equations to the generalized kinetic equations the dynamic instability of the motion of particles plays the constructive role. The generalized kinetic equation for the Boltzmann gas consists of the two dissipative terms: 1) the “collision integral”, defined by the processes in a velocity space; 2) an additional dissipative term of the diffusion type in the coordinate space. Owing to the latter the unified description of the kinetic, hydrodynamic, and diffusion processes for all values of the Knudsen number becomes possible. The H-theorem for the generalized kinetic equation is proved. The entropy production is defined by the sum of two independent positive terms corresponding to redistribution of the particles in velocity and coordinate space respectively. An entropy flux also consists of two parts. One is proportional to the entropy, and the other is proportional to the gradient of entropy. The existence of the second term allows one to give a general definition of the heat flux for any values of the Knudsen number, which is proportional to the gradient of entropy. This general definition for small Knudsen number and constant pressure leads to the Fourier law. The equations of gas dynamic for a special class of distribution functions follow from the generalized kinetic equation without the perturbation theory for the Knudsen number. These equations differ from the traditional ones by taking the self-diffusion processes into account. The generalized kinetic equation for describing the Brownian motion and of autowave processes in active media is considered. The connection with reaction diffusion equations, the Fisher–Kolmogorov–Petrovski–Piskunov and Ginzburg–Landau equations, is established. We discuss the connection between the diffusion of particles in a restricted system with the natural flicker (1/f) noise in passive and active systems. The criteria of the relative degree of order of the states of open system – the criteria of self-organization, are presented.
@article{TMF_1993_96_3_a4,
     author = {Yu. L. Klimontovich},
     title = {From the {Hamiltonian} mechanics to a~continuous media. {Dissipative} structures. {Criteria} of self-organization},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {385--416},
     year = {1993},
     volume = {96},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TMF_1993_96_3_a4/}
}
TY  - JOUR
AU  - Yu. L. Klimontovich
TI  - From the Hamiltonian mechanics to a continuous media. Dissipative structures. Criteria of self-organization
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1993
SP  - 385
EP  - 416
VL  - 96
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1993_96_3_a4/
LA  - en
ID  - TMF_1993_96_3_a4
ER  - 
%0 Journal Article
%A Yu. L. Klimontovich
%T From the Hamiltonian mechanics to a continuous media. Dissipative structures. Criteria of self-organization
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1993
%P 385-416
%V 96
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1993_96_3_a4/
%G en
%F TMF_1993_96_3_a4
Yu. L. Klimontovich. From the Hamiltonian mechanics to a continuous media. Dissipative structures. Criteria of self-organization. Teoretičeskaâ i matematičeskaâ fizika, Tome 96 (1993) no. 3, pp. 385-416. http://geodesic.mathdoc.fr/item/TMF_1993_96_3_a4/

[1] Klimontovich Yu. L., “On Nonequilibrium Fluctuations in a Gas”, TMF, 8 (1971), 109

[2] Klimontovich Yu. L., Kinetic Theory of Non Ideal Gases and Non Ideal Plasmas, Nauka, Moscow, 1975 ; Pergamon Press, Oxford, 1982 | MR

[3] Klimontovich Yu. L., The Kinetic Theory of Electromagnetic Processes, Nauka, Moscow, 1980 ; Springer, Berlin, Heidelberg, 1983 | MR

[4] Klimontovich Yu. L., Statistical Physics, Nauka, Moscow, 1982 ; Harwood Academic Publishers, New York, 1986 | MR

[5] Klimontovich Yu. L., Turbulent Motion and the Structure of Chaos, Nauka, Moscow, 1990 ; Kluwer Acad. Pub., Dordrecht, 1991 | MR | Zbl

[6] Klimontovich Yu. L., Statistical Theory of Open Systems (in press), Academic Publishers, Kluwer Dordrecht

[7] Monin A. S., Yaglom A. M., Statistical Fluid Mechanics, Nauka, Moscow, 1965 ; MIT, 1971 | MR

[8] Landau L. D., Lifshits E. M., Fluid Mechanics, Nauka, Moscow, 1986 ; Pergamon Press, Oxford, 1959 | MR

[9] Klimontovich Yu. L., Statistical Theory for Non Equilibrium Processes in a Plasma, Nauka, Moscow, 1964 ; Pergamon Press, Oxford, 1967 | MR

[10] Krylov N. S., Works for the Foundation of Statistical Physics, Nauka, Moscow, 1950 | MR

[11] Prigogine I., From Being to Becoming, Freeman, San Francisco, 1980 ; Nauka, Moscow, 1985

[12] Prigogin I., Stengers I., Order out of Chaos, Heinemann, London, 1984 ; Progress, Moscow, 1986 | MR | Zbl

[13] Romanovski Yu. M., Stepanova N. V., Chernavsky D. S., Mathematical Biology, Nauka, Moscow, 1984 | MR | Zbl

[14] Klimontovich Yu. L., “Entropy Evolution in Self-Organization Processes. $H$-Theorem and $S$-Theorem”, Physica, 142A (1987), 390 | DOI | MR

[15] Lorenz E., “Deterministic Nonperiodic Flow”, J. Atm. Sci., 20 (1963), 167

[16] Haken, Synergetics, Springer, Berlin, Heidelberg, 1978 ; Mir, Moscow, 1980 | MR | Zbl

[17] Anishchenko V. S., Complicated Oscillations in Simple Systems, Nauka, Moscow, 1990 | MR | Zbl

[18] Neimark Yu. I., Landa P. S., Stochastic and Chaotic Oscillations, Nauka, Moscow, 1987 ; Kluwer Acad. Publ., Dordrecht, 1992 | MR | Zbl

[19] Lifshits E. M., Pitaevsky L. P., Statistical Physics, Nauka, Moscow, 1978

[20] Nicolis G., Prigogine I., Self Organization in Non Equilibrium Systems, Wiley, New York, 1977 ; Mir, Moscow, 1979 | MR | Zbl | MR

[21] Haken H., Advanced Synergetics, Springer, Berlin, Heidelberg, 1983 ; Mir, Moscow, 1985 | MR | Zbl | MR

[22] Michailov A. S., Foundations of Synergetics. I, Springer, Berlin, Heidelberg, 1990 | MR

[23] Michailov A. S., Loskutov A. Yu., Foundations of Synergetics. II, Springer, Berlin, Heidelberg, 1991 | MR

[24] Murray G., Lectures on Nonlinear Differential Equations Models in Biology, Clarendon Press, Oxford, 1977 | Zbl

[25] Vasiliev V. A., Romanovsky Yu. M., Yachno V. G., Autowaves, Nauka, Moscow, 1987

[26] Klimontovich Yu. L., “Some Problems of the Statistical Description of Hydrodynamic Motion and Autowaves Processes”, Physica, 179A (1991), 471 | DOI

[27] Klimontovich Yu. L., “On the Necessity and the Possibility of the Unified Description of Kinetic and Hydrodynamic Processes”, TMF, 92 (1992), 312 | MR | Zbl

[28] Klimontovich Yu. L., “The Unified Description of Kinetic and Hydrodynamic Processes in Gases and Plasmas”, Physics Let.(A), 170 (1992), 434 | DOI | MR

[29] Van Kampen N. G., Stocastic Processes in Physics and Chemistry, North-Holland, Amsterdam, 1983 | MR | Zbl

[30] Risken H., The Fokker–Planck Equation, Springer, Berlin, 1984 | MR | Zbl

[31] Gardiner C. W., Handbook of Stochastic Methods for Physics, Chemistry, and Natural Sciences, Springer, Berlin, Heidelberg, 1984 | MR | Zbl

[32] Gantsevich S. V., Gurevich V. L., Katilus R., “Theory of Fluctuations in Non Equilibrium Electron Gas”, Rivista del Nuovo Cimento, 2 (1979), 1 | DOI | MR

[33] Kogan Sh. M., Shul'man A. Ya., “To the Theory of Fluctuations in a Nonequilibrium Gas”, ZhETF, 56 (1969), 862

[34] Lifshits E. M., Pitaevsky L. P., Statistical Physics, Nauka, Moscow, 1978

[35] Keizer J., Statistical Thermodynamics of Nonequilibrium Processes, Springer, Berlin, Heidelberg, New York, 1987 | MR

[36] Klimontovich Yu. L., “Natural Flicker Noise”, Pis'ma v ZhTF, 9 (1983), 406

[37] Klimontovich Yu. L., Boon J. P., “Natural Flicker Noise ($1/f$-noise) in Music”, Europhys. Lett., 3(4) (1987), 395 | DOI

[38] Klimontovich Yu. L., “Natural Flicker Noise ($1/f$-noise) and Superconductivity”, Pis'ma v ZhETF, 51(1) (1990), 43

[39] Kogan Sh. M., “The Low Frequency Current Noise with Spectrum $1/f$ in Solid State”, Usp. Fiz. Nauk, 145 (1985), 285 | DOI

[40] Voos R. F., Clarke J., “$1/f$1/f Noise in Music: Music from $1/f$ Noise”, J. Acoust. Soc. Am., 643(1) (1978), 258 | DOI

[41] Klimontovich Yu. L., “Entropy Decrease in the Processes of Self-Organization. $S$-Theorem”, Pis'ma v ZhTF, 9 (1983), 1089

[42] Klimontovich Yu. L., “$S$-Theorem”, Z. Phys.(B), 66 (1987), 125 | DOI | MR

[43] Klimontovich Yu. L., “Problems in the Statistical Theorie of Open Systems: Criteria for Relative Degree of Order of States in Self-organization Processes”, Usp. Fiz. Nauk, 158 (1989), 59 | DOI | MR

[44] Ebeling W., Klimontovich Yu. L., Selforganization and Turbulance in Liquids, Teubner, Leipzig, 1984 | Zbl

[45] Haken H., Synergetic Computers and Cognition. A Top-Down Approach to Neural Nets, Springer-Verlag, Berlin, Heidelberg, 1991 | MR | Zbl

[46] Fuchs A., Haken H., “Computer simulations of pattern recognition as a dynamical process of a synergetic system”, Neural and synergetic computers (Schloss Elmau, 1988), Springer Ser. Synergetics, 42, Springer, Berlin, 1988, 16–28 | DOI | MR

[47] Akhromeyeva T. S., Kurdumov S. P., Malinetskii G. G., Samarski A. A., Chaos and Dissipative Structures in “Reaction-Diffusion” Systems, Nauka, Moscow, 1992 | MR