Determinant of the Schrödinger operator
Teoretičeskaâ i matematičeskaâ fizika, Tome 96 (1993) no. 3, pp. 373-384 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For the example of the nonrelativistic Schrödinger operator, methods are formulated for calculating the determinant of an elliptic operator on the basis of scattering theory. It is shown that such a determinant is identical to the Jost determinant at zero energy. In the centrally symmetric case, it reduces to ordinary Jost functions and ultimately to the values of the zero-energy wave functions at the origin. The relationship between the determinant of the Schrödinger operator and the characteristics of the scattering resonances and the number of bound states in a field of opposite sign is noted. This makes it possible to find the first terms in the gradient expansion of the determinant as a functional of the potential. The problem of the correlation free energy of a classical plasma serves as a physical illustration.
@article{TMF_1993_96_3_a3,
     author = {D. A. Kirzhnits},
     title = {Determinant of the {Schr\"odinger} operator},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {373--384},
     year = {1993},
     volume = {96},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1993_96_3_a3/}
}
TY  - JOUR
AU  - D. A. Kirzhnits
TI  - Determinant of the Schrödinger operator
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1993
SP  - 373
EP  - 384
VL  - 96
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1993_96_3_a3/
LA  - ru
ID  - TMF_1993_96_3_a3
ER  - 
%0 Journal Article
%A D. A. Kirzhnits
%T Determinant of the Schrödinger operator
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1993
%P 373-384
%V 96
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1993_96_3_a3/
%G ru
%F TMF_1993_96_3_a3
D. A. Kirzhnits. Determinant of the Schrödinger operator. Teoretičeskaâ i matematičeskaâ fizika, Tome 96 (1993) no. 3, pp. 373-384. http://geodesic.mathdoc.fr/item/TMF_1993_96_3_a3/

[1] Shvarts A. S., Kvantovaya teoriya polya i topologiya, Nauka, M., 1989 ; Кафиев Ю. Н., Аномалии и теория струн, Наука, Новосибирск, 1991 | MR | Zbl | MR | Zbl

[2] De Alfaro V., Redzhe T., Potentsialnoe rasseyanie, Mir, M., 1966 ; Гольдбергер М., Ватсон К., Теория столкновений, Мир, М., 1967 | Zbl

[3] Kirzhnits D. A., Polevye metody teorii mnogikh chastits, Atomizdat, M., 1963

[4] Landau L. D., Lifshits E. M., Statisticheskaya fizika, ch. I, Nauka, M., 1976 | MR

[5] Kirzhnits D. A., Lozovik Yu. E., Shpatakovskaya G. V., UFN, 117 (1975), 3 | DOI

[6] S. Lundkvist, N. March (red.), Teoriya neodnorodnogo elektronnogo gaza, Mir, M., 1987

[7] Uitteker E. T., Vatson Dzh. N., Kurs sovremennogo analiza, GIFML, M., 1962

[8] Nyuton R., Teoriya rasseyaniya voln i chastits, Mir, M., 1969 ; Киржниц Д. А., Крючков Г. Ю., Такибаев Н. Ж., ЭЧАЯ, 16 (1979), 741 | MR | MR