Determinant of the Schr\"odinger operator
Teoretičeskaâ i matematičeskaâ fizika, Tome 96 (1993) no. 3, pp. 373-384

Voir la notice de l'article provenant de la source Math-Net.Ru

For the example of the nonrelativistic Schrödinger operator, methods are formulated for calculating the determinant of an elliptic operator on the basis of scattering theory. It is shown that such a determinant is identical to the Jost determinant at zero energy. In the centrally symmetric case, it reduces to ordinary Jost functions and ultimately to the values of the zero-energy wave functions at the origin. The relationship between the determinant of the Schrödinger operator and the characteristics of the scattering resonances and the number of bound states in a field of opposite sign is noted. This makes it possible to find the first terms in the gradient expansion of the determinant as a functional of the potential. The problem of the correlation free energy of a classical plasma serves as a physical illustration.
@article{TMF_1993_96_3_a3,
     author = {D. A. Kirzhnits},
     title = {Determinant of the {Schr\"odinger} operator},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {373--384},
     publisher = {mathdoc},
     volume = {96},
     number = {3},
     year = {1993},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1993_96_3_a3/}
}
TY  - JOUR
AU  - D. A. Kirzhnits
TI  - Determinant of the Schr\"odinger operator
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1993
SP  - 373
EP  - 384
VL  - 96
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1993_96_3_a3/
LA  - ru
ID  - TMF_1993_96_3_a3
ER  - 
%0 Journal Article
%A D. A. Kirzhnits
%T Determinant of the Schr\"odinger operator
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1993
%P 373-384
%V 96
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1993_96_3_a3/
%G ru
%F TMF_1993_96_3_a3
D. A. Kirzhnits. Determinant of the Schr\"odinger operator. Teoretičeskaâ i matematičeskaâ fizika, Tome 96 (1993) no. 3, pp. 373-384. http://geodesic.mathdoc.fr/item/TMF_1993_96_3_a3/