Critical exponents of ising-like systems in general dimensions
Teoretičeskaâ i matematičeskaâ fizika, Tome 96 (1993) no. 3, pp. 482-495 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Critical exponents of Ising-like systems are calculated in the case, when the dimension of space is non-integer. Calculations are performed in the frames of the fixed-dimension field theoretical approach. Renormalization group functions in the Callan–Symanzik scheme are considered directly in non-integer dimensions. Perturbation theory expansions are resummed with the use of Pade–Borel transformation.
@article{TMF_1993_96_3_a11,
     author = {Yu. Holovatch},
     title = {Critical exponents of ising-like systems in general dimensions},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {482--495},
     year = {1993},
     volume = {96},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1993_96_3_a11/}
}
TY  - JOUR
AU  - Yu. Holovatch
TI  - Critical exponents of ising-like systems in general dimensions
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1993
SP  - 482
EP  - 495
VL  - 96
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1993_96_3_a11/
LA  - ru
ID  - TMF_1993_96_3_a11
ER  - 
%0 Journal Article
%A Yu. Holovatch
%T Critical exponents of ising-like systems in general dimensions
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1993
%P 482-495
%V 96
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1993_96_3_a11/
%G ru
%F TMF_1993_96_3_a11
Yu. Holovatch. Critical exponents of ising-like systems in general dimensions. Teoretičeskaâ i matematičeskaâ fizika, Tome 96 (1993) no. 3, pp. 482-495. http://geodesic.mathdoc.fr/item/TMF_1993_96_3_a11/

[1] Wilson K. G., Fisher M. E., Phys. Rev. Lett., 28:4 (1972), 240–243 | DOI

[2] Wilson K. G., Kogut J., Phys. Rep., C12:2 (1974), 75–199 | DOI

[3] Brezin E., Le Guillou J. C., Zinn-Justin J., Phase Transitions and Critical Phenomena, eds. C. Domb and M. S., Green. Academic Press, New York, 1975 | MR

[4] Ma S.-K., Modern theory of critical phenomena, Benjamin Reading, 1976

[5] Wallace D. J., Zia R. K. P., Phys. Rev. Lett., 43:12 (1979), 808–812 | DOI

[6] Forster D., Gabriunas A., Phys. Rev., A23:5 (1981), 2627–2633 | DOI

[7] Forster D., Gabriunas A., Phys. Rev., A24:1 (1981), 598–600 | DOI

[8] Bruce A. D., Wallace D. J., Phys. Rev. Lett., 47:24 (1981), 1743–1746 | DOI | MR

[9] Khmelnitskii D. E., ZhETF, 68:5 (1975), 1960–1968

[10] Grinstein G., Luther A., Phys. Rev., B13:3 (1976), 1329–1343 | DOI

[11] Fisher M. E., Gaunt D. S., Phys. Rev., 133:1A (1964), A224–A239 | DOI

[12] Katz S. L., Droz M., Gunton J. D., Phys. Rev., B15:3 (1977), 1597–1599 | DOI

[13] Le Guillou J. C., Zinn-Justin J., J. Phys. (Paris), 48:1 (1987), 19–24 | DOI | MR

[14] Gorishny S. G., Larin S. A., Tkachov F. V., Phys. Lett., A101:3 (1984), 120–123 | DOI

[15] Gefen Y., Mandelbrot B., Aharony A., Phys. Rev. Lett., 45:11 (1980), 855–858 | DOI | MR

[16] Bonnier B., Leroyer Y., Meyers C., Phys. Rev., B37:10A (1988), 5205–5210 | DOI

[17] Bonnier B., Leroyer Y., Meyers C., Phys. Rev., B40:13 (1989), 8961–8966 | DOI

[18] Bonnier B., Hontebeyrie M., J. Phys. (Paris), 11:1 (1991), 5205–5210

[19] Novotny M. A., Europhys. Lett., 17:4 (1992), 297–302 | DOI | MR

[20] Novotny M. A., Phys. Rev., B46:5 (1992), 2939–2950 | DOI

[21] Novotny M. A., What is the scaling dimension of finite systems?, preprint FSU-SCRI-92-111, Florida State University, 1992 | Zbl

[22] Mandelbrot B. B., Fractals: form, chance, and dimension, W. H. Freeman Co, San Francisco, 1977 | MR | Zbl

[23] Mandelbrot B. B., The fractal geometry of nature, W. H. Freeman Co, N. Y., 1983 | MR

[24] Holovatch Yu., Shpot M., Critical behaviour of dilute Ising-like systems in non-integer dimensions, preprint ITP-90-48E, Institute for theoretical physics of the Ukrainian Acad. Sci., Kiev, 1990

[25] Holovatch Yu., Shpot M., J. Stat. Phys., 66:3–4 (1992), 847–863

[26] Parisi G., J. Stat. Phys., 23:1 (1980), 49–82 | DOI | MR

[27] Le Guillou J. C., Zinn-Justin J., Phys. Rev., B21:9 (1980), 3976–3998 | DOI | Zbl

[28] Amit D. J., Field theory, the renormalization group, arid critical phenomena, Mc Graw-Hill Int. Book Co., New York, 1978 | MR

[29] Holovatch Yu., Phase transition in continuous symmetry model in general dimension: fixed dimension renormalization group approach, preprint SPhT/92-123, CEA Saclay, Service de Physique Theorique, 1992

[30] Holovatch Yu., Krokhmalskii T., Compilation of 2-pt and 4-pt graphs in field theory in non-integer dimensions, preprint ICMP-92-3E, Institute for Condensed Matter Physics, Lviv, 1992

[31] Brezin E., Le Guillou J. C., Zinn-Justin J., Nickel B. G., Phys. Lett., A44:4 (1973), 227–228 | DOI

[32] Le Guillou J. C., Zinn-Justin J., Phys. Rev. Lett., 39:2 (1977), 95–98 | DOI | MR

[33] Abramowitz M., Stegun A. I. (eds.), Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, National Bureau of Standards, 1964 | MR

[34] Schafer L., von Ferber C., Lehr U., Duplantier B., Nucl. Phys., B374 (1992), 473–495 | DOI | MR | Zbl

[35] Baker G. A. (jr.), Nickel B. G., Meiron D. J., Phys. Rev., B17:3 (1978), 1365–1374 | DOI

[36] Filippov A. E., Radievskii A. B., ZhETF, 102:6(12) (1992), 1899–1920

[37] Breus S. A., Filippov A. E., Physica, A192 (1992), 486–515

[38] Baker G. A.(jr.), Benofy L. P., J. Stat. Phys., 29:4 (1982), 699–716 | DOI | MR

[39] Mayer I. O., J. Phys., A22 (1989), 2815–2833

[40] Mayer I. O., Sokolov A. I., Shalaev B. N., Ferroel., 95:1 (1989), 93–96 | DOI