A new completely orthogonalized plane waves formalizm in the pseudopotential theory
Teoretičeskaâ i matematičeskaâ fizika, Tome 96 (1993) no. 3, pp. 473-481 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A new approach based on the completely orthogonalized plane waves (COPW) formalizm is developed in the pseudopotential theory. Utilizing of the complete and orthonormalized basis for the eigenvalue problem solution is the most principled peculiarity of the COPW method. The COPW method allows to perform the similarity transformation of the Schrödinger equation and obtain the rigorous $W_{{\operatorname {COPW}}}$ pseudopotential definition. The explicit expressions of $W_{{\operatorname {COPW}}}$ formfactors are presented and analyzed. The peculiarities and advantages of the COPW approach in comparison with the conventional pseudopotential theory methods are discussed in detail.
@article{TMF_1993_96_3_a10,
     author = {T. Bryk and Z. Gurskii},
     title = {A~new completely orthogonalized plane waves formalizm in the pseudopotential theory},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {473--481},
     year = {1993},
     volume = {96},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1993_96_3_a10/}
}
TY  - JOUR
AU  - T. Bryk
AU  - Z. Gurskii
TI  - A new completely orthogonalized plane waves formalizm in the pseudopotential theory
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1993
SP  - 473
EP  - 481
VL  - 96
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1993_96_3_a10/
LA  - ru
ID  - TMF_1993_96_3_a10
ER  - 
%0 Journal Article
%A T. Bryk
%A Z. Gurskii
%T A new completely orthogonalized plane waves formalizm in the pseudopotential theory
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1993
%P 473-481
%V 96
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1993_96_3_a10/
%G ru
%F TMF_1993_96_3_a10
T. Bryk; Z. Gurskii. A new completely orthogonalized plane waves formalizm in the pseudopotential theory. Teoretičeskaâ i matematičeskaâ fizika, Tome 96 (1993) no. 3, pp. 473-481. http://geodesic.mathdoc.fr/item/TMF_1993_96_3_a10/

[1] Hogenberg P., Kohn W., Phys. Rev., 136 (1964), 864 ; Kohn W., Sham L.J., Phys. Rev. A, 140 (1965), 1133 | DOI | MR | DOI | MR

[2] Nemoshkalenko V. V., Antonov V. N., Computational Physics Methods in Solid State Theory. Band Theory of Metals, Naukova dumka, Kiev, 1985 (Russian)

[3] Yukhnovskii I. R., Gurskii Z. A., The Quantum-Statistical Theory of Disordered Systems, Naukova dumka, Kiev, 1991 (Russian) | MR

[4] Pickett W. E., Freeman A. I., Koeling D. D., Phys. Rev. B, 22 (1980), 2695 | DOI

[5] Reser B. I., Dyakin V. V., Phys. Stat. Sol. (b), 87 (1978), 41 | DOI

[6] Abarenkov I. V., Phys. Stat. Sol. (b), 50 (1972), 465 | DOI | MR

[7] Girardeau M. D., J. Math. Phys., 12 (1971), 165 | DOI

[8] Gurskii B. A., Gurskii Z. A., Ukr. Phys. Journ., 21 (1976), 1603, 1609 | MR

[9] Harrison W. A., Pseudopotentials in the Theory of Metals, W. A. Benjamin Inc., New York, Amsterdam, 1966 | MR

[10] Gann V. V., Pokhodyashii V. I., Ukr. Phys. Journ., 33 (1988), 1407 | MR

[11] Bogolubov N. N., Izbrannii Trudy, v. 2, Naukova dumka, Kiev, 1970 | MR

[12] Waeber W. B., Shively J. E., Physica, 65 (1973), 213, 240 | DOI

[13] Callaway J., Energy Band Theory, Academic Press, New York, London, 1964 | MR | Zbl