Infrared asymptotics of the Feynman propagator in a simple non-Abellian model
Teoretičeskaâ i matematičeskaâ fizika, Tome 96 (1993) no. 2, pp. 313-320 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The large-distance behavior of the Feynman propagator is investigated in a simple non-Abelian model of fermions and massless bosons that generalizes the model considered by Popov and Wu with isospin to the case of an arbitrary compact semisimple Lie group and space dimension $d\le 4$. The leading infrared approximation for the asymptotic behavior is obtained by means of the renormalization-group method applied to the effective one-dimensional massless model that describes the eikonal approximation to the original field theory.
@article{TMF_1993_96_2_a3,
     author = {N. V. Antonov and A. N. Vasil'ev and M. M. Stepanova},
     title = {Infrared asymptotics of the {Feynman} propagator in a~simple {non-Abellian} model},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {313--320},
     year = {1993},
     volume = {96},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1993_96_2_a3/}
}
TY  - JOUR
AU  - N. V. Antonov
AU  - A. N. Vasil'ev
AU  - M. M. Stepanova
TI  - Infrared asymptotics of the Feynman propagator in a simple non-Abellian model
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1993
SP  - 313
EP  - 320
VL  - 96
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1993_96_2_a3/
LA  - ru
ID  - TMF_1993_96_2_a3
ER  - 
%0 Journal Article
%A N. V. Antonov
%A A. N. Vasil'ev
%A M. M. Stepanova
%T Infrared asymptotics of the Feynman propagator in a simple non-Abellian model
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1993
%P 313-320
%V 96
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1993_96_2_a3/
%G ru
%F TMF_1993_96_2_a3
N. V. Antonov; A. N. Vasil'ev; M. M. Stepanova. Infrared asymptotics of the Feynman propagator in a simple non-Abellian model. Teoretičeskaâ i matematičeskaâ fizika, Tome 96 (1993) no. 2, pp. 313-320. http://geodesic.mathdoc.fr/item/TMF_1993_96_2_a3/

[1] Popov V. N., Wu T. T., Phys. Lett., 85B:4 (1979), 395–398 | DOI

[2] Popov B. H., Kontinualnye integraly v kvantovoi teorii polya i statisticheskoi fizike, Atomizdat, M., 1976 | MR

[3] Adzhemyan L. Ts., Vasilev A. N., Pismak Yu. M., TMF, 68:3 (1986), 323–337

[4] Adzhemyan L. Ts., Vasilev A. N., Perekalin M. M., Reittu Kh. Yu., ZhETF, 96:4(10) (1989), 1278–1285

[5] Kollinz Dzh., Perenormirovka, Mir, M., 1988 | MR

[6] Zheleznyakov V. V., Kocharovskii V. V., Kocharovskii Vl. V., UFN, 141:2 (1983), 257–310 | DOI

[7] Vladimirov A. A., TMF, 43:2 (1980), 210–217