Infrared asymptotics of the Feynman propagator in a simple non-Abellian model
Teoretičeskaâ i matematičeskaâ fizika, Tome 96 (1993) no. 2, pp. 313-320
Cet article a éte moissonné depuis la source Math-Net.Ru
The large-distance behavior of the Feynman propagator is investigated in a simple non-Abelian model of fermions and massless bosons that generalizes the model considered by Popov and Wu with isospin to the case of an arbitrary compact semisimple Lie group and space dimension $d\le 4$. The leading infrared approximation for the asymptotic behavior is obtained by means of the renormalization-group method applied to the effective one-dimensional massless model that describes the eikonal approximation to the original field theory.
@article{TMF_1993_96_2_a3,
author = {N. V. Antonov and A. N. Vasil'ev and M. M. Stepanova},
title = {Infrared asymptotics of the {Feynman} propagator in a~simple {non-Abellian} model},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {313--320},
year = {1993},
volume = {96},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1993_96_2_a3/}
}
TY - JOUR AU - N. V. Antonov AU - A. N. Vasil'ev AU - M. M. Stepanova TI - Infrared asymptotics of the Feynman propagator in a simple non-Abellian model JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1993 SP - 313 EP - 320 VL - 96 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_1993_96_2_a3/ LA - ru ID - TMF_1993_96_2_a3 ER -
%0 Journal Article %A N. V. Antonov %A A. N. Vasil'ev %A M. M. Stepanova %T Infrared asymptotics of the Feynman propagator in a simple non-Abellian model %J Teoretičeskaâ i matematičeskaâ fizika %D 1993 %P 313-320 %V 96 %N 2 %U http://geodesic.mathdoc.fr/item/TMF_1993_96_2_a3/ %G ru %F TMF_1993_96_2_a3
N. V. Antonov; A. N. Vasil'ev; M. M. Stepanova. Infrared asymptotics of the Feynman propagator in a simple non-Abellian model. Teoretičeskaâ i matematičeskaâ fizika, Tome 96 (1993) no. 2, pp. 313-320. http://geodesic.mathdoc.fr/item/TMF_1993_96_2_a3/
[1] Popov V. N., Wu T. T., Phys. Lett., 85B:4 (1979), 395–398 | DOI
[2] Popov B. H., Kontinualnye integraly v kvantovoi teorii polya i statisticheskoi fizike, Atomizdat, M., 1976 | MR
[3] Adzhemyan L. Ts., Vasilev A. N., Pismak Yu. M., TMF, 68:3 (1986), 323–337
[4] Adzhemyan L. Ts., Vasilev A. N., Perekalin M. M., Reittu Kh. Yu., ZhETF, 96:4(10) (1989), 1278–1285
[5] Kollinz Dzh., Perenormirovka, Mir, M., 1988 | MR
[6] Zheleznyakov V. V., Kocharovskii V. V., Kocharovskii Vl. V., UFN, 141:2 (1983), 257–310 | DOI
[7] Vladimirov A. A., TMF, 43:2 (1980), 210–217