Coset algebras, integrable hierarchies and matrix models
Teoretičeskaâ i matematičeskaâ fizika, Tome 96 (1993) no. 2, pp. 163-287 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{TMF_1993_96_2_a0,
     author = {K. de Vos},
     title = {Coset algebras, integrable hierarchies and matrix models},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {163--287},
     year = {1993},
     volume = {96},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TMF_1993_96_2_a0/}
}
TY  - JOUR
AU  - K. de Vos
TI  - Coset algebras, integrable hierarchies and matrix models
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1993
SP  - 163
EP  - 287
VL  - 96
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1993_96_2_a0/
LA  - en
ID  - TMF_1993_96_2_a0
ER  - 
%0 Journal Article
%A K. de Vos
%T Coset algebras, integrable hierarchies and matrix models
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1993
%P 163-287
%V 96
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1993_96_2_a0/
%G en
%F TMF_1993_96_2_a0
K. de Vos. Coset algebras, integrable hierarchies and matrix models. Teoretičeskaâ i matematičeskaâ fizika, Tome 96 (1993) no. 2, pp. 163-287. http://geodesic.mathdoc.fr/item/TMF_1993_96_2_a0/

[1] Ablowitz M. J., Clarkson P. A., Solitons, nonlinear evolution equations and inverse scattering, Lond. Math. Soc. Lect. Note Ser., 149, Cambridge University Press, 1991 | MR | Zbl

[2] Ahn C., Shigemoto K., “Multi-matrix model and 2D Toda multi-component hierarchy”, Phys. Lett., 263B (1991), 44–50 | DOI | MR

[3] Altschüler D., Beran P., Lacki J., Roditi I., “Twisted vertex operators and representations of finite Heisenberg groups”, Int. J. Mod. Phys., A4 (1989), 921–942 | DOI | MR | Zbl

[4] Alvarez-Gaumé L., Gomez C., Lacki J., “Integrability in random matrix models”, Phys. Lett., 253B (1991), 56–62 | DOI | MR

[5] Ambjørn J., Durhuus B., Fröhlich J., “Diseases of triangulated random surface models, and possible cures”, Nucl. Phys., B257:3 (1985), 433–449 | MR

[6] Anderson G., Moore G., “Rationality in conformal field theory”, Comm. Math. Phys., 117 (1988), 441–450 | DOI | MR | Zbl

[7] Bagger J., “Basic conformal field theory”, Particles and fields 3 (Banff, AB, 1988), World Sci. Publ., 1989, 556–606 | MR

[8] Bagger J., Nemeschansky D., Coset construction of chiral algebras, Harvard preprint HUTP-88/A059, College Park Workshop, 1988 | MR

[9] Bais F. A., Bouwknegt P., Schoutens K., Surridge M., “Extensions of the Virasoro algebra constructed from Kac–Moody algebras using higher order Casimir invariants”, Nucl. Phys., B304 (1988), 348–370 | DOI | MR | Zbl

[10] Bais F. A., Bouwknegt P., Schoutens K., Surridge M., “Coset construction for extended Virasoro algebras”, Nucl. Phys., B304 (1988), 371–391 | DOI | MR | Zbl

[11] Bais F. A., Englert F., Taormina A., Zizzi P., “Torus compactification for nonsimply laced groups”, Nucl. Phys., B279 (1987), 529–547 | DOI | MR

[12] Bais F. A., de Vos K., “A coset construction for integrable hierarchies”, Differential Geometric Methods in Theoretical Physics (Proc. Conf. Lake Tahoe, California, 1988), eds. Chau L.-L., Nahm W., Plenum Press, New York, 1990, 291–296 ; preprint ITFA 89-28, Amsterdam, 1989 | DOI | MR | Zbl

[13] Bais F. A., de Vos K., “The algebraic structure of integrable hierarchies in bilinear form”, Recent Developments in Conformal Field Theories (Proc. Trieste Conf. Italy, 1989), eds. Randjbar-Daemi S., Sezgin E., Zuber J.-B., World Scientific, Singapore, 1990, 271–279 | MR

[14] Bais F. A., Taormina A., “Accidental degeneracies in string compactification”, Phys. Lett., 181B (1986), 87–90 | DOI | MR

[15] Bais F. A., Tjin T., van Driel P., “Covariantly coupled chiral algebras”, Nucl. Phys., B357 (1991), 632–654 | DOI | MR

[16] Bakas I., “The Hamiltonian structure of the spin 4 operator algebra”, Phys. Lett., 213B (1988), 313–318 ; “Higher spin fields and the Gelfand–Dickey algebras”, Comm. Math. Phys., 123 (1989), 627–639 | DOI | MR | DOI | MR | Zbl

[17] Bardacki K., Halpern M. B., “New dual quark models”, Phys. Rev., D3 (1971), 2493–2506 | MR

[18] Barut A. O., Raczka R., Theory of group representations and applications, World Scientific, 1986 | MR | Zbl

[19] Belavin A. A., Polyakov A. M., Zamolodchikov A. B., “Infinite conformal symmetry in two-dimensional quantum field theory”, Nucl. Phys., B241 (1984), 333–380 | DOI | MR | Zbl

[20] Bessis D., Itzykson C., Zuber J.-B., “Quantum field theory techniques in graphical enumeration”, Adv. Appl. Math., 1 (1980), 109–157 | DOI | MR | Zbl

[21] Blok B., Yankielowicz S., “Extended current algebras and the coset construction of conformal field theories”, Nucl. Phys., B315 (1989), 25–42 | DOI | MR

[22] Blumenhagen R., Flohr M., Kliem A., Nahm W., Recknagel A., Varnhagen R., “$W$-algebras with two and three generators”, Nucl. Phys., B361 (1991), 255–289 | DOI | MR

[23] Bouwknegt P., “On the construction of modular invariant partition functions”, Nucl. Phys., B290:4 (1987), 507–526 | DOI | MR

[24] Bouwknegt P., “Extended conformal algebras”, Phys. Lett., 270B (1988), 295 | DOI | MR

[25] Bouwknegt P., “Extended conformal algebras from Kac-Mpody algebras”, Infinite-dimensional Lie algebras and Lie groups (Proc. CIRM-Luminy conf., 1988), ed. Kac V. G., World Scientific, Singapore, 1989 | MR

[26] Bowcock P., “Quasi-primary fields and associativity of chiral algebras”, Nucl. Phys., B356 (1991), 367–386 | DOI | MR

[27] Bowcock P., Goddard P., “Coset constructions and extended conformal algebras”, Nucl. Phys., B305 (1988), 685–709 | DOI | MR | Zbl

[28] Bowcock P., Watts G. M. T., “On the classification of quantum W algebras”, Nucl. Phys., B379 (1992), 63–95 | DOI | MR

[29] Bowick M. J., Morozov A., Shevitz D., “Reduced unitary matrix models and the hierarchy of $\tau$-functions”, Nucl. Phys., B354 (1991), 496–530 | DOI | MR

[30] Brézin E., Itzykson C., Parisi G., Zuber J.-B., “Planar diagrams”, Comm. Math. Phys., 59 (1978), 35–51 | DOI | MR | Zbl

[31] Brézin E., Kazakov V., “Exactly solvable field theories of closed strings”, Phys. Lett., 236B (1990), 144–150 | DOI | MR

[32] Cappelli A., Itzykson C., Zuber J.-B., “The A-D-E Classification of Minimal and $A^{(1)}_1$ Conformal Invariant Theories”, Comm. Math. Phys., 113 (1987), 1–26 | DOI | MR | Zbl

[33] Cardy J. L., “Conformal invariance”, Phase transitions and critical phenomena, vol. 11, eds. Domb C., Lebowitz J., Academic Press, 1986 | MR

[34] Cardy J. L., “Operator content of two-dimensional conformally invariant theories”, Nucl. Phys., B270:2 (1986), 186–204 | DOI | MR | Zbl

[35] Cvitanović P., Group theory, Nordita notes, 1984

[36] Damour T., Taylor J. H., “Strong-field tests of relativistic gravity and binary pulsars”, Phys. Rev. D, 45 (1992), 1840–1868 | DOI | MR

[37] Das A., “Integrable models”, Lecture Notes in Physics, 30, World Scientific, Singapore, 1989 | MR | Zbl

[38] Date E., Jimbo M., Kashiwara M., Miwa T., “Transformation groups for soliton equations, Euclidean Lie algebras and reduction of the KP hierarchy”, Publ. Res. Inst. Math. Sci., 18 (1982), 1077–1110 | DOI | MR | Zbl

[39] Date E., Kashiwara M., Miwa T., “Vertex operators and $\tau$-functions”, Proc. Japan Acad., 57A (1981), 387–392 | DOI | MR | Zbl

[40] David F. Planar diagrams, two-dimensional lattice gravity and surface models. A model of random surfaces with non-trivial critical behaviour, Nucl. Phys., B257:1 (1985), 45–58, 543–576 | DOI | MR

[41] De Bakker B. V., $W$-algebras in the coset model $su(2)/u(1)$, Masters thesis, Amsterdam, 1991

[42] De Boer J., “Multimatrix models and the KP-hierarchy”, Nucl. Phys., B366 (1991), 602–628 | DOI | MR

[43] Dengyuan C., Hangwei Z., “Lie algebraic structure for the AKNS system”, J. Phys., A24 (1991), 377–383 | Zbl

[44] Dickey L. A., Soliton equations and Hamiltonian systems, Advanced Series in Mathematical Physics, 12, World Scientific Publishing Co. Inc., River Edge, 1991 | DOI | MR | Zbl

[45] Dijkgraaf R., Verlinde E., “Modular invariance and the fusion algebra”, Nucl. Phys., 5B (1988), 87–97 | MR | Zbl

[46] Dijkgraaf R., Verlinde H., Verlinde E., “Loop equations and Virasoro constraints in non-perturbative two-dimensional quantum gravity”, Nucl. Phys., B348 (1991), 435–456 | DOI | MR

[47] Distler J., Kawai H., “Conformal field theory and 2d quantum gravity”, Nucl. Phys., B321 (1989), 509–527 | DOI | MR

[48] Douglas M. R., “Strings in less than one dimension and the generalized KdV hierarchies”, Phys. Lett., 238B (1990), 176–180 | DOI | MR | Zbl

[49] Douglas M., Shenker S., “Strings in less than one dimension”, Nucl. Phys., B335 (1990), 635–654 | DOI | MR

[50] Drinfeld V. G., Sokolov V. V., “Lie algebras and equations of KdV type”, J. Sov. Math., 30 (1985), 1975–2036 | DOI | Zbl

[51] Dynkin E. B., “Semisimple subalgebras of semisimple Lie algebras, Maximal subgroups of the classical groups”, Amer. Math. Soc. Transl. (2), 6 (1957), 111–244, 245–378

[52] Fateev V. A., Lykyanov S. L., “The models of two-dimensional conformal quantum field theory with $Z_n$ symmetry”, Int. J. Mod. Phys., A3 (1988), 507–520 | DOI | MR

[53] Fateev V. A., Lykyanov S. L., Additional symmetries and exactly solvable models in two-dimensional conformal field theory. I, II, III, preprint I, II, III, Landau Institute for Theoretical Physics, 1988 | MR

[54] Fateev V., Zamolodchikov A., “Conformal quantum field theory models in two dimensions having $Z_3$ symmetry”, Nucl. Phys., B280:4 (1987), 644–660 | DOI | MR

[55] Fehér L., O'Raifeartaigh L., Ruelle P., Tsutsui I., Wipf A., On the general structure of Hamiltonian reductions of the WZWNW theory, Dublin preprint DIAS-STP-91-29, to appear in Phys. Rep

[56] Fermi A., Pasta J., Ulam S., “Studies of nonlinear problems. I. Los Alamos report LA1940 (1955)”, Nonlinear Wave Motion, Lect. Appl. Math., 15, ed. Newell A. C., AMS, Providence, RI, 1974, 143–196 | MR

[57] Friedan D., Martinec E., Shenker S., “Conformal invariance, supersymmetry, and string theory”, Nucl. Phys., B271 (1986), 93–165 | DOI | MR

[58] Friedan D., Qiu Z., Shenker S., “Conformal invariance, unitarity, and critical exponents in two dimensions”, Phys. Rev. Lett., 52 (1984), 1575–1578 ; Vertex operators in mathematics and physics, eds. Lepowsky J. et al., Springer-Verlag, 1984 ; Comm. Math. Phys., 107 (1986), 535–542 | DOI | MR | DOI | MR | Zbl

[59] Friedan D., Shenker S., “The analytic geometry of two-dimensional conformal field theory”, Nuclear Phys. B, 281:3–4 509–545 (1987) | MR

[60] Fucito F., Martinelli M., Gamba A., “Non-perturbative two-dimensional quantum gravity, KdV hierarchy and solutions of the string equations”, Phys. Lett., 248B (1990), 57–61 | DOI | MR

[61] Fukuma M., Kawai H., Nakayama R., “Continuum Schwinger-Dyson equations and universal structures in two-dimensional quantum gravity”, Int. J. Mod. Phys., A6 (1991), 1385–1406 | DOI | MR

[62] Fukuma M., Kawai H., Nakayama R., Infinite Dimensional Grassmannian Structure of Two-Dimensional Quantum Gravity, Preprint UT-572, KEKTH-272, KEK 90-165, 1990 | MR

[63] Gardner C. S., “The Korteweg–de Vries equation and generalizations. IV. The Korteweg–de Vries equation as a Hamiltonian system”, J. Math. Phys., 12 (1971), 1548–1551 | DOI | MR | Zbl

[64] Gardner C. S., Greene J. M., Kruskal M. D., Miura R. M., “Method for solving the Korteweg–de Vries equation”, Phys. Rev. Lett., 19 (1967), 1095–1097 | DOI | MR

[65] Gelfand I. M., Dickey L. A., “Fractional powers of operators and Hamiltonian systems”, Funct. Anal. Appl., 10:4 (1976), 13–29 ; “The resolvent and Hamiltonian systems”, Funct. Anal. Appl., 11:2 (1977), 93–105 | MR | Zbl | DOI | MR | Zbl

[66] Gepner D., “On the spectrum of conformal field theories”, Nucl. Phys., B287 (1987), 111–130 | DOI | MR

[67] Gerasimov A., Marshakov A., Mironov A., Morozov A., Orlov A., “Matrix models of two-dimensional gravity and Toda theory”, Nucl. Phys., B357 (1991), 565–618 | DOI | MR

[68] Gervais J. L., “Infinite family of polynomial functions of the Virasoro generators with vanishing Poisson brackets”, Phys. Lett., 160B (1985), 277–278 | DOI | MR

[69] Gervais J. L., Neveu A., “Dual string spectrum in Polyakov's quantization (II)”, Nucl. Phys., B209 (1982), 125–145 | DOI | MR

[70] Ginsparg P., “Applied conformal field theory”, Fields, strings and critical phenomena (1es Houches, Session XLIX, 1988), eds. Brézin E., Zinn-Justin J., Elsevier, 1989 | MR

[71] Ginsparg P., Matrix models of 2d gravity, Los Alamos preprint LA-UR-91-4101 (Lectures given at 1991 Trieste summer school), december 1991

[72] Goddard P., “Meromorphic conformal field theory”, Infinite-dimensional Lie algebras and Lie groups (Proc. CIRM-Luminy conf., 1988), ed. Kac V. G., World Scientific, Singapore, 1989 | MR

[73] Goddard P., Kent A., Olive D., “Virasoro algebras and coset space models”, Phys. Lett., 152B (1985), 88–92 | DOI | MR | Zbl

[74] Goddard P., Nahm W., Olive D., “Symmetric spaces, Sugawara's energymomentum tensor in two dimensions and free fermions”, Phys. Lett., 160B (1985), 111–116 | DOI | MR | Zbl

[75] Goddard P., Olive D., “Kac–Moody and Virasoro algebras in relation to quantum physics”, Int. J. Mod. Phys., A1 (1986), 303–414 | DOI | MR | Zbl

[76] Goeree J., “$W$-constraints in 2D quantum gravity”, Nucl. Phys., B358 (1991), 737–757 | DOI | MR

[77] Green M. B., Schwarz J. H., Witten E., Superstring Theory, vol. 1, 2, Cambridge University Press, 1987 | MR | Zbl

[78] Gross D., Migdal A. A., “Nonperturbative two-dimensional quantum gravity”, Phys. Rev. Lett., 64 (1990), 127–130 | DOI | MR | Zbl

[79] Gross D., Periwal V., “String perturbation theory diverges”, Phys. Rev. Lett., 60 (1988), 2105–2108 | DOI | MR

[80] Halpern M. B., Kiritsis E., Mod. Phys. Lett., A4 (1989), 1373–1380 ; Halpern M. B., Kiritsis E., Obers N. A., Porrati M., Yamron J. P., “New unitary affine Virasoro constructions”, Int. J. Mod. Phys., A5 (1990), 2275 | DOI | MR | DOI | MR

[81] Hirota R., “Direct methods in soliton theory”, Topics in Current Physics, V. 17, eds. Bullough R., Caudrey P., Springer-Verlag, New York, 1980, 157–175 | DOI | MR

[82] Ho-Kim Q., Zheng H. B., “Twisted conformal field theories with $S_3$ invariance”, Phys. Lett., 212B (1988), 71–76 ; “Twisted structures of extended Virasoro algebras”, Phys. Lett., 223B (1989), 57–60 ; “Twisted characters and partition functions in extended Virasoro algebras”, Mod. Phys. Lett., A5 (1990), 1181–1189 | DOI | MR | DOI | MR | MR | Zbl

[83] Itoyama H., Matsuo Y., “Noncritical Virasoro algebra of the $d1$ matrix model and the quantized string field”, Phys. Lett., 255B (1991), 202–208 | DOI | MR

[84] Itoyama H., Matsuo Y., “$w_{1+\infty}$-type constraints in matrix models at finite $N$”, Phys. Lett., 262B (1991), 233–239 | DOI | MR

[85] Kac V. G., “Simple graded Lie algebras of finite growth”, Funct. Anal. App., 1 (1967), 328–329 | MR

[86] Kac V. G., Infinite dimensional Lie algebras, Cambridge University Press, Cambridge, 1985 | MR | Zbl

[87] Kac V. G., “Automorphisms of finite order of semi-simple Lie algebras”, Funct. Anal. Appl., 3 (1969), 252–254 ; Helgason S., Differential geometry, Lie groups and symmetric spaces, Academic Press, 1978 | DOI | MR | Zbl | MR | Zbl

[88] Kac V. G., Peterson D. H., “112 constructions of the basic representation of the loop group of $E_8$”, Proc. Conf. on Anomalies, Geometry and Topology (Argonne, Chicago), eds. Bardeen W. A., White A. R., World Scientific, Singapore, 1985, 276–298 | MR

[89] Kac V. G., Raina A. K., Bombay lectures on highest weight representations of infinite-dimensional Lie algebras, Advanced Series in Mathematical Physics, 2, World Scientific Publishing Co. Inc., Teaneck, NJ, 1987 | MR | Zbl

[90] Kac V. G., Schwarz A., “Geometric interpretation of partition function of 2D-gravity”, Phys. Lett., 258B (1991), 329–334 | DOI | MR

[91] Kac M., van Moerbeke P., Proc. Natl. Acad. Sci. USA., 72 (1975), 1627 | DOI | MR | Zbl

[92] Kac V. G., Wakimoto M., “Modular and conformal invariance constraints in representation theory of affine algebras”, Adv. in Math., 70 (1988), 156–236 | DOI | MR | Zbl

[93] Kac V. G., Wakimoto M., “Exceptional hierarchies of soliton equations. I”, Proc. Symp. Pure Math., 49 (1989), 191–237 | DOI | MR | Zbl

[94] Kadomtsev B. B., Petviashvili V. I., “On the stability of solitary waves in weakly dispersive media”, Sov. Phys. Dokl., 31 (1970), 539–541

[95] Kaku M., Strings, Conformal Fields, and Topology. An Introduction, Springer-Verlag, New York, 1991 | MR | Zbl

[96] Kato A., “Classification of modular invariant partition functions in two dimensions”, Mod. Phys. Lett., A2 (1987), 585 | DOI | MR

[97] Kausch H. G., Watts G. M. T., “A study of W-algebras using Jacobi identities”, Nucl. Phys., B354 (1991), 740–768 | DOI | MR

[98] Kazakov V. A., Kostov I. K., Migdal A. A., “Critical properties of randomly triangulated planar random surfaces”, Phys. Lett., 157B (1985), 295 | DOI | MR

[99] Knizhnik V. G., Polyakov A. M., Zamolodchikov A. B., “Fractal structure of 2D quantum gravity”, Mod. Phys. Lett., A3 (1988), 819 | DOI | MR

[100] Korteweg D. J., de Vries G., “On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves”, Philos. Mag. (5), 39 (1895), 422–443 | DOI | MR

[101] La H. S., “Symmetries in nonperturbative 2-d quantum gravity”, Mod. Phys. Lett., A6 (1991), 573–580 ; Geometry of Virasoro Constraints in Nonperturbative 2-d Quantum Gravity, Preprint UPR-0453T, 1990 | MR | MR

[102] Lax P. D., “Integrals of nonlinear equations of evolution and solitary waves”, Comm. Pure Appl. Math., 21 (1968), 467–490 | DOI | MR | Zbl

[103] Lepowsky J., Wilson R. L., “Construction of the affine Lie algebra $A^{(1)}_1$”, Comm. Math. Phys., 62 (1978), 43–53 | DOI | MR | Zbl

[104] Magri F., “A simple model of the integrable Hamiltonian equation”, J. Math. Phys., 19 (1978), 1156–1162 | DOI | MR | Zbl

[105] Makeenko Yu., Marshakov A., Mironov A., Morozov A., “Continuum versus discrete Virasoro in one-matrix models”, Nucl. Phys., B356 (1991), 574–628 | DOI | MR

[106] Martinec E. J., “On the origin of integrability in matrix models”, Comm. Math. Phys., 138 (1991), 437–449 | DOI | MR | Zbl

[107] Mathieu P., “Extended classical conformal algebras and the second Hamiltonian structure of Lax equations”, Phys. Lett., B208 (1988), 101–106 | DOI | MR

[108] Miura R. M., “Korteweg–de Vries equations and generalizations. I. A remarkable explicit nonlinear transformation”, J. Math. Phys., 9 (1968), 1202–1204 | DOI | MR | Zbl

[109] Moody R. V., “Lie algebras associated with generalized Cartan matrices”, Bull. Am. Math. Soc., 73 (1967), 217–221 | DOI | MR | Zbl

[110] Moore G., Seiberg N., “Polynomial equations for rational conformal field theories”, Phys. Lett., 212B (1988), 451–460 | DOI | MR

[111] Moore G., Seiberg N., “Naturality in conformal field theory”, Nucl. Phys., B313 (1989), 16–40 | DOI | MR

[112] Nahm W., Talk given at the Conference on Recent Developments in Conformal Field Theory, Trieste, october 1989

[113] Nahm W., unpublished

[114] Narganes Quijano F. J., “On the parafermionic $W_N$-algebra”, Int. J. Mod. Phys., A6 (1991), 2611–2634 | DOI | MR | Zbl

[115] Newell A. C., Solitons in mathematics and physics, SIAM, 1985 | MR

[116] Obefs N., private communication

[117] Orlov A. Yu., Schulman E. I., “Additional symmetries for integrable equations and conformal algebra representation”, Lett. Math. Phys., 12 (1986), 171–179 ; Grinevich P. G., Orlov A. Yu., “Virasoro action on Riemann surfaces, Grassmannians, $\det\bar\partial_j$ and Segal–Wilson $\tau$-function”, Problems of Modern Quantum Field Theory, eds. Belavin A. A. et al., Springer Verlag, Berlin, Heidelberg, 1989 | DOI | MR | Zbl | MR

[118] Peterson D. H., Kac V. G., “Infinite flag varieties and conjugacy theorems”, Proc. Natl. Acad. Sci. USA., 80 (1983), 1778 | DOI | MR | Zbl

[119] Polyakov A. M., “Quantum geometry of bosonic strings”, Phys. Lett., 103B (1981), 207–210 | DOI | MR

[120] Polyakov A. M., Mod. Phys. Lett., A2 (1987), 893 ; “Gauge transformations and diffeomorphisms”, Int. J. Mod. Phys., A5 (1990), 833 | DOI | MR | DOI | MR

[121] Pope C. N., Romans L. J., Shen X., “A brief history of $W_\infty$”, Proceedings of “Strings 90” (Texas A M), eds. Arnowitt R. et al., World Scientific, 1991 | MR | Zbl

[122] Post G., “Pure Lie algebraic approach to the modified Korteweg–de Vries equation”, J. Math. Phys., 27 (1986), 678–681 | DOI | MR | Zbl

[123] Scott Russell J., “Report of the committee on waves”, Report of the 7th Meeting of the British Association for the Advancement of Science, Liverpool, 1838, 417–496

[124] Sato M., “Soliton equations as dynamical systems on infinite dimensional Grassmann manifolds”, RIMS Kokyuroku, 439 (1981), 30–46 | Zbl

[125] Schoutens K., Extensions of conformal symmetry in 2-dimensional quantum field theory, Ph. D. thesis, University of Utrecht, 1989

[126] Schrans S., Extensions of conformal invariance in two-dimensional quantum field theory, Ph.D. thesis, University of Leuven, 1991

[127] Schwarz A., “On some mathematical problems of 2D-gravity and $W_h$-gravity”, Mod. Phys. Lett., A6 (1991), 611–616 | DOI | MR | Zbl

[128] Segal G., Wilson G., “Loop groups and equations of KdV type”, Publ. Math. IHES, 61 (1985), 1–65 | DOI | MR

[129] Semikhatov A. M., “Soliton equations and the Virasoro algebra”, Int. J. Mod. Phys., A4 (1989), 467–480 | DOI | MR

[130] Smoot G. F., Bennett C. L., Wright E. L., Kogut A. et al., To be published in Astrophys. J. Lett., 1992

[131] Sugawara H., “A field theory of currents”, Phys. Rev., 170 (1968), 1659–1662 | DOI

[132] ten Kroode A. P. E., Bergvelt M. J., “The homogeneous realization of the basic representation of $A^{(1)}_1$ and the Toda lattice”, Lett. Math. Phys., 12 (1986), 139–147 | DOI | MR | Zbl

[133] Thielemans K., “A Mathematica package for computing operator product expansions”, Int. J. Mod. Phys., C2 (1991), 787–798 | DOI | MR | Zbl

[134] 't Hooft G., “A planar diagram theory for strong interactions”, Nucl. Phys., B72 (1974), 461–473 | DOI

[135] Ueno K., Takasaki K., “Toda lattice hierarchy”, Adv. Studies in Pure Math., 4 (1984), 1 | MR | Zbl

[136] Verlinde E., “Fusion rules and modular transformations in 2d conformal field theory”, Nucl. Phys., B300 (1988), 360–375 | DOI | MR

[137] Vermaseren J., FORM User's Guide, Nikhef-Amsterdam, 1990

[138] Wakimoto M., Yamada H., “Irreducible decompositions of Fock representations of the Virasoro algebra”, Lett. Math. Phys., 7 (1983), 513–516 | DOI | MR | Zbl

[139] Watts G. M. T., “$W$-algebras and coset models”, Phys. Lett., 245B (1990), 65–71 | DOI | MR

[140] Watts G. M. T., Extended algebras in conformal field theory, Ph.D. thesis, Trinity College, Cambridge, 1990

[141] Witten E., “Non-abelian bosonization in two dimensions”, Comm. Math. Phys., 92 (1984), 455–472 | DOI | MR | Zbl

[142] Witten E., Two dimensional gravity and intersection theory on moduli space, Princeton preprint IASSNS-HEP-90/45 | MR

[143] Zabusky N. J., Kruskal M. D., “Interactions of solitons in a collisionless plasma and the recurrence of initial states”, Phys. Rev. Lett., 15 (1965), 240–243 | DOI | Zbl

[144] Zakharov V. E., Faddeev L. D., “The Korteweg–de Vries equation: a completely integrable Hamiltonian system”, Funct. Anal. Appl., 5 (1971), 280–287 | DOI | MR | Zbl

[145] Zamolodchikov A. B., “Infinite additional symmetries in two-dimensional conformal quantum field theory”, Theor. Math. Phys., 65 (1985), 1205–1213 | DOI | MR

[146] Zamolodchikov A. B., Zamolodchikov Al. B., “Conformal field theory and critical phenomena”, Sov. Sci. Rev. A. Phys., 10 (1989), 269–433 | MR