On the geometry of supermanifolds with even and odd Kählerian structures
Teoretičeskaâ i matematičeskaâ fizika, Tome 96 (1993) no. 1, pp. 140-149 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Even and odd Kählerian structures are constructed on supermanifolds associated with the tangent bundles of Kählerian manifolds. Mechanics that are bi-Hamiltonian with respect to the corresponding Poisson brackets are found; they determine Killing vectors of the Kählerian structures. An analog of the operator $\Delta$ in the Batalin–Vilkovisky quantization method is constructed; it corresponds to the divergence operator of the base manifold.
@article{TMF_1993_96_1_a9,
     author = {A. P. Nersesyan},
     title = {On the geometry of supermanifolds with even and odd {K\"ahlerian} structures},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {140--149},
     year = {1993},
     volume = {96},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1993_96_1_a9/}
}
TY  - JOUR
AU  - A. P. Nersesyan
TI  - On the geometry of supermanifolds with even and odd Kählerian structures
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1993
SP  - 140
EP  - 149
VL  - 96
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1993_96_1_a9/
LA  - ru
ID  - TMF_1993_96_1_a9
ER  - 
%0 Journal Article
%A A. P. Nersesyan
%T On the geometry of supermanifolds with even and odd Kählerian structures
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1993
%P 140-149
%V 96
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1993_96_1_a9/
%G ru
%F TMF_1993_96_1_a9
A. P. Nersesyan. On the geometry of supermanifolds with even and odd Kählerian structures. Teoretičeskaâ i matematičeskaâ fizika, Tome 96 (1993) no. 1, pp. 140-149. http://geodesic.mathdoc.fr/item/TMF_1993_96_1_a9/

[1] Berezin F. A., Vvedenie v algebru i analiz s antikommutiruyuschimi peremennymi, MGU, M., 1983 | MR

[2] Leites D. A., DAN SSSR, 236:4 (1977), 804–807 | MR | Zbl

[3] Khudaverdian O. M., Mkrtchian R. L., Lett. Math. Phis., 18:3 (1989), 229–234 | DOI | MR

[4] Batalin I. A., Vilkovisky G. A., Phys. Lett., 102B:1 (1981), 27–31 | DOI | MR

[5] Batalin I. A., Vilkovisky G. A., Nucl. Phys., B234 (1984), 106–124 | DOI | MR

[6] Volkov D. V., Pisma v ZhETF, 38:10 (1983), 508–510; Волков Д. В., Сорока В. А., Ткач В. И., ЯФ, 44:3(9) (1986), 810–820 | MR

[7] Volkov D. V., Pashnev A. I., Soroka V. A., Tkach V. I., Pisma v ZhETF, 44:1 (1986), 55–57

[8] Kupersmidth B. A., Lett. Math. Phys., 9:4 (1985), 323–330 | DOI | MR

[9] Witten E., Mod. Phys. Lett., A5 (1990), 487–494 | DOI | MR | Zbl

[10] Khudaverdian O. M., Nersessian A. P., Formulation of Hamiltonian Mechanics with Odd and Even Poisson Bracets, Preprint ErFI 1031(81)-87, ErFI, Erevan, 1987

[11] Khudaverdian O. M., J. Math. Phys., 32:7 (1991), 1934–1937 | DOI | MR | Zbl

[12] Khudaverdian O. M., Nersessian A. P., J. Math. Phys., 32:7 (1991), 1938–1941 | DOI | MR | Zbl

[13] Kac V., Commun. Math. Phys., 53:1 (1977), 31–64 | DOI | MR | Zbl

[14] Nersesyan A. P., Khudaverdyan O. M., Izvestiya AN Armenii. Fizika, 25:6 (1990), 337–344

[15] Shander V. N., DAN Bolgarii, 36 (1983), 309–312 | MR | Zbl

[16] Khudaverdian O. M., Schwarz A. S., Tiupkin Yu. S., Lett. Math. Phys., 5:6 (1981), 517–522 | DOI | MR | Zbl

[17] Baranov M. A., Shvarts A. S., Funkts. analiz i prilozh., 18:2 (1984), 53–545 | MR