Boundary conditions for nonlinear equations compatible with integrability
Teoretičeskaâ i matematičeskaâ fizika, Tome 96 (1993) no. 1, pp. 109-122 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Infinite series of local boundary conditions completely compatible with the inverse scattering method are presented for the nonlinear Schrödinger equation and the sine–Gordon equation.
@article{TMF_1993_96_1_a7,
     author = {I. T. Habibullin},
     title = {Boundary conditions for nonlinear equations compatible with integrability},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {109--122},
     year = {1993},
     volume = {96},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1993_96_1_a7/}
}
TY  - JOUR
AU  - I. T. Habibullin
TI  - Boundary conditions for nonlinear equations compatible with integrability
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1993
SP  - 109
EP  - 122
VL  - 96
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1993_96_1_a7/
LA  - ru
ID  - TMF_1993_96_1_a7
ER  - 
%0 Journal Article
%A I. T. Habibullin
%T Boundary conditions for nonlinear equations compatible with integrability
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1993
%P 109-122
%V 96
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1993_96_1_a7/
%G ru
%F TMF_1993_96_1_a7
I. T. Habibullin. Boundary conditions for nonlinear equations compatible with integrability. Teoretičeskaâ i matematičeskaâ fizika, Tome 96 (1993) no. 1, pp. 109-122. http://geodesic.mathdoc.fr/item/TMF_1993_96_1_a7/

[1] Sklyanin E. K., Funkts. analiz i ego prilozh., 21:2 (1987), 86–87 | MR | Zbl

[2] Fokas A. S., Initial-boundary value problems for a class of nonlinear evolution equations, INS-81-preprint, New York, 1987. ; Physica D, 35 (1989), 167–185 | MR | DOI | Zbl

[3] Bibikov P. N., Tarasov V. O., TMF, 79:3 (1989), 334–346 | MR | Zbl

[4] Habibullin I. T., Proc. IV International Workshop “Nonlinear and turbulent Processes in Physics”, v. 1 (Kiev, 1989), Singapore, 1990, 259

[5] Khabibullin I. T., Matem. zametki, 49:4 (1991), 130–137 | MR | Zbl

[6] Khabibullin I. T., TMF, 86:1 (1991), 43–51 | MR

[7] Bikbaev R. F., Tarasov V. O., J. Phys. A, 24 (1991), 2507–2518 | DOI | MR

[8] Sharipov R. A., Yamilov P. I., Zadachi matematicheskoi fiziki i asimptotiki ikh reshenii, In-t matematiki RAN, Ufa, 1991, 66–78

[9] Khabibullin I. T., TMF, 91:3 (1992), 363–376 | MR

[10] Zakharov V. E., Manakov S. V., Novikov S. P., Pitaevskii L. P., Teoriya solitonov. Metod obratnoi zadachi, Nauka, M., 1980 | MR

[11] Ablovitz M., Segur H., J. Math. Phys., 16 (1975), 1054 | DOI

[12] Ablovits M., Sigur X., Solitony i metod obratnoi zadachi, Nauka, M., 1986 | MR

[13] Shabat A. B., Zadachi mekhaniki i matematicheskoi fiziki, Nauka, M., 1976 | MR

[14] Takhtadzhyan L. A., Faddeev L. D., Gamiltonov podkhod v teorii solitonov, Nauka, M., 1986 | MR | Zbl

[15] Bikbaev R. F., Tarasov V. O., Algebra i analiz, 3:4 (1991), 78–92 | MR

[16] Shabat A. B., Yamilov R. I., Phys. Lett. A, 130 (1988), 271 | DOI | MR

[17] Habibullin I. T., Boundary condition completely compatible with the integrability, Nonlinear Evolution Equations and Dynamical Systems (NEEDS-92), JINR, Dubna, 1992 | MR