Estimate of the number of collisions of $n$ elastic particles on a~line
Teoretičeskaâ i matematičeskaâ fizika, Tome 96 (1993) no. 1, pp. 64-78

Voir la notice de l'article provenant de la source Math-Net.Ru

An explicit upper bound is obtained for the number of reflections of a billiard trajectory in a multidimensional polyhedral angle (in particular, for the number of collisions of $n$ elastic particles on a line) in terms of a special geometrical characteristic of the angle.
@article{TMF_1993_96_1_a4,
     author = {M. B. Sevryuk},
     title = {Estimate of the number of collisions of $n$ elastic particles on a~line},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {64--78},
     publisher = {mathdoc},
     volume = {96},
     number = {1},
     year = {1993},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1993_96_1_a4/}
}
TY  - JOUR
AU  - M. B. Sevryuk
TI  - Estimate of the number of collisions of $n$ elastic particles on a~line
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1993
SP  - 64
EP  - 78
VL  - 96
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1993_96_1_a4/
LA  - ru
ID  - TMF_1993_96_1_a4
ER  - 
%0 Journal Article
%A M. B. Sevryuk
%T Estimate of the number of collisions of $n$ elastic particles on a~line
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1993
%P 64-78
%V 96
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1993_96_1_a4/
%G ru
%F TMF_1993_96_1_a4
M. B. Sevryuk. Estimate of the number of collisions of $n$ elastic particles on a~line. Teoretičeskaâ i matematičeskaâ fizika, Tome 96 (1993) no. 1, pp. 64-78. http://geodesic.mathdoc.fr/item/TMF_1993_96_1_a4/