Estimate of the number of collisions of $n$ elastic particles on a~line
Teoretičeskaâ i matematičeskaâ fizika, Tome 96 (1993) no. 1, pp. 64-78
Voir la notice de l'article provenant de la source Math-Net.Ru
An explicit upper bound is obtained for the number of reflections of a billiard trajectory in a multidimensional polyhedral angle (in particular, for the number of collisions of $n$ elastic particles on a line) in terms of a special geometrical characteristic of the angle.
@article{TMF_1993_96_1_a4,
author = {M. B. Sevryuk},
title = {Estimate of the number of collisions of $n$ elastic particles on a~line},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {64--78},
publisher = {mathdoc},
volume = {96},
number = {1},
year = {1993},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1993_96_1_a4/}
}
M. B. Sevryuk. Estimate of the number of collisions of $n$ elastic particles on a~line. Teoretičeskaâ i matematičeskaâ fizika, Tome 96 (1993) no. 1, pp. 64-78. http://geodesic.mathdoc.fr/item/TMF_1993_96_1_a4/