Thermal fluctuations of the bose condensate in Bogolyubov's model of superfluidity
Teoretičeskaâ i matematičeskaâ fizika, Tome 96 (1993) no. 1, pp. 37-43 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The method of stationary phase in the canonical ensemble with constraint is used to calculate the partition function of Bogolyubov's model from the above-condensate (quantum) and condensate (classical) variables. Expressions are obtained for the stationary values and variances of the particle numbers of both components. Numerical estimates show that the level of the thermal fluctuations of its condensate exceeds its occupation number at temperatures near the transition point, while the opposite situation holds near $0^{\mathrm{o}}$К. The significance of this circumstance for the interpretation on experiments attempting to find the density of the superfluid component in liquid $^{4}$Не is discussed.
@article{TMF_1993_96_1_a2,
     author = {V. S. Yarunin},
     title = {Thermal fluctuations of the bose condensate in {Bogolyubov's} model of superfluidity},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {37--43},
     year = {1993},
     volume = {96},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1993_96_1_a2/}
}
TY  - JOUR
AU  - V. S. Yarunin
TI  - Thermal fluctuations of the bose condensate in Bogolyubov's model of superfluidity
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1993
SP  - 37
EP  - 43
VL  - 96
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1993_96_1_a2/
LA  - ru
ID  - TMF_1993_96_1_a2
ER  - 
%0 Journal Article
%A V. S. Yarunin
%T Thermal fluctuations of the bose condensate in Bogolyubov's model of superfluidity
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1993
%P 37-43
%V 96
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1993_96_1_a2/
%G ru
%F TMF_1993_96_1_a2
V. S. Yarunin. Thermal fluctuations of the bose condensate in Bogolyubov's model of superfluidity. Teoretičeskaâ i matematičeskaâ fizika, Tome 96 (1993) no. 1, pp. 37-43. http://geodesic.mathdoc.fr/item/TMF_1993_96_1_a2/

[1] Bogolyubov N. N., Izv. AN SSSR. Ser. fiz., XI (1947), 77 | MR

[2] Popov V. N., Tr. MIAN, 191, 1989, 55 | MR | Zbl

[3] Bogolubov N. N.(jr.), Corgini R., Sancovich D. P., Modern Phys. Letters B, 6 (1992), 215 | DOI | MR

[4] Bogolyubov N. N., Lektsii po kvantovoi statistike, t. 2 (Izbr. trudy), Naukova dumka, Kiev, 1970, 351 | MR

[5] Gugengolts N., Kvantovaya teoriya sistem mnogikh tel, Mir, M., 1967, 78

[6] Syurakshina L. A., Yarunin B. C., DAN SSSR, 321 (1991), 294

[7] Bogoyavlenskii I. V., Karnatsevich L. V., Kozlov Zh. A., Puchkov A. V., FNT, 16 (1990), 139

[8] Blagoveschenskii N. M., Bogoyavlenskii I. V., Karnatsevich L. V., Kozlov Zh. A., Kolobrodov V. G., Puchkov A. V., Skomorokhov A. N., Preprint OIYaI RZ-92-578, Dubna, 1992 | MR

[9] Popov V. N., Kontinualnye integraly v kvantovoi teorii polya i statisticheskoi fizike, Atomizdat, M., 1976, 176 | MR

[10] Shirshov M. B., Yarunin B. C., TMF, 77:3 (1988), 369

[11] Kittel Ch., Vvedenie v fiziku tverdogo tela, Nauka, M., 1976