Three-dimensional volume of a closed universe as a canonical time parameter
Teoretičeskaâ i matematičeskaâ fizika, Tome 95 (1993) no. 3, pp. 541-548
Cet article a éte moissonné depuis la source Math-Net.Ru
The dynamics of a spatially closed universe is studied in gravitation theory by means of the eigenfunctions and eigenvalues of the $3D$ projection of the Dirac operator. In a gauge that we call the Ashtekar gauge and construct by using an eigenfunction of this operator, the $3D$ volume of a spatial section is a canonical parameter, and the energy is a positive-definite functional of the dynamical variables (on the region of the phase space in which $\dot V>0$) proportional to the corresponding eigenvalue. There is a discrete set of frames of reference distinguished in this manner.
@article{TMF_1993_95_3_a9,
author = {N. N. Gorobey and A. S. Lukyanenko},
title = {Three-dimensional volume of a~closed universe as a~canonical time parameter},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {541--548},
year = {1993},
volume = {95},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1993_95_3_a9/}
}
TY - JOUR AU - N. N. Gorobey AU - A. S. Lukyanenko TI - Three-dimensional volume of a closed universe as a canonical time parameter JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1993 SP - 541 EP - 548 VL - 95 IS - 3 UR - http://geodesic.mathdoc.fr/item/TMF_1993_95_3_a9/ LA - ru ID - TMF_1993_95_3_a9 ER -
N. N. Gorobey; A. S. Lukyanenko. Three-dimensional volume of a closed universe as a canonical time parameter. Teoretičeskaâ i matematičeskaâ fizika, Tome 95 (1993) no. 3, pp. 541-548. http://geodesic.mathdoc.fr/item/TMF_1993_95_3_a9/
[1] Ashtekar A., Physica, 124A (1984), 51–60 | DOI | MR | Zbl
[2] Mizner Ch., Torn K., Uiller Dzh., Gravitatsiya, t. 2, Mir, M., 1977 | MR
[3] Witten E., Commun. Math. Phys., 80 (1981), 381 | DOI | MR | Zbl
[4] Lukyanenko A. S., DAN SSSR, 289:3 (1986), 579–583 | MR | Zbl
[5] Ashtekar A., Phys. Rev., D36 (1987), 1587 | MR
[6] Jacobson T., Smolin L., Phys. Lett., 196B (1987), 39 | DOI | MR
[7] Jacobson T., Class. Quantum Grav., 5 (1988), 923–935 | DOI | MR | Zbl