Three-dimensional volume of a~closed universe as a~canonical time parameter
Teoretičeskaâ i matematičeskaâ fizika, Tome 95 (1993) no. 3, pp. 541-548

Voir la notice de l'article provenant de la source Math-Net.Ru

The dynamics of a spatially closed universe is studied in gravitation theory by means of the eigenfunctions and eigenvalues of the $3D$ projection of the Dirac operator. In a gauge that we call the Ashtekar gauge and construct by using an eigenfunction of this operator, the $3D$ volume of a spatial section is a canonical parameter, and the energy is a positive-definite functional of the dynamical variables (on the region of the phase space in which $\dot V>0$) proportional to the corresponding eigenvalue. There is a discrete set of frames of reference distinguished in this manner.
@article{TMF_1993_95_3_a9,
     author = {N. N. Gorobey and A. S. Lukyanenko},
     title = {Three-dimensional volume of a~closed universe as a~canonical time parameter},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {541--548},
     publisher = {mathdoc},
     volume = {95},
     number = {3},
     year = {1993},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1993_95_3_a9/}
}
TY  - JOUR
AU  - N. N. Gorobey
AU  - A. S. Lukyanenko
TI  - Three-dimensional volume of a~closed universe as a~canonical time parameter
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1993
SP  - 541
EP  - 548
VL  - 95
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1993_95_3_a9/
LA  - ru
ID  - TMF_1993_95_3_a9
ER  - 
%0 Journal Article
%A N. N. Gorobey
%A A. S. Lukyanenko
%T Three-dimensional volume of a~closed universe as a~canonical time parameter
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1993
%P 541-548
%V 95
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1993_95_3_a9/
%G ru
%F TMF_1993_95_3_a9
N. N. Gorobey; A. S. Lukyanenko. Three-dimensional volume of a~closed universe as a~canonical time parameter. Teoretičeskaâ i matematičeskaâ fizika, Tome 95 (1993) no. 3, pp. 541-548. http://geodesic.mathdoc.fr/item/TMF_1993_95_3_a9/