Low-temperature electron states at a Peierls instability of order-disorder type
Teoretičeskaâ i matematičeskaâ fizika, Tome 95 (1993) no. 3, pp. 513-529 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A one-dimensional system with electronic Peierls instability of order-disorder type is investigated in the tight-binding approximation in the case of a half-filled band. The corresponding critical temperature is estimated in the self-consistent field approximation. An exact solution is obtained for the electron states in the presence of a domain wall at low temperatures; it is used to calculate the energy of the domain wall and predict the appearance of additional states at the center of the Peierls gap and outside the regular electron spectrum. The rearrangement of the electron spectrum with the appearance of additional states when pairs of domain walls are created is also discussed.
@article{TMF_1993_95_3_a7,
     author = {E. V. Kholopov},
     title = {Low-temperature electron states at {a~Peierls} instability of order-disorder type},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {513--529},
     year = {1993},
     volume = {95},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1993_95_3_a7/}
}
TY  - JOUR
AU  - E. V. Kholopov
TI  - Low-temperature electron states at a Peierls instability of order-disorder type
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1993
SP  - 513
EP  - 529
VL  - 95
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1993_95_3_a7/
LA  - ru
ID  - TMF_1993_95_3_a7
ER  - 
%0 Journal Article
%A E. V. Kholopov
%T Low-temperature electron states at a Peierls instability of order-disorder type
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1993
%P 513-529
%V 95
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1993_95_3_a7/
%G ru
%F TMF_1993_95_3_a7
E. V. Kholopov. Low-temperature electron states at a Peierls instability of order-disorder type. Teoretičeskaâ i matematičeskaâ fizika, Tome 95 (1993) no. 3, pp. 513-529. http://geodesic.mathdoc.fr/item/TMF_1993_95_3_a7/

[1] Bulaevskii L. N., UFN, 115:2 (1975), 263–300 | DOI

[2] Back P., Rep. Prog. Phys., 45:6 (1982), 587–629 | DOI | MR

[3] Kholopov E. B., Panich A. M., Moroz N. K., Kriger Yu. G., ZhETF, 84:3 (1983), 1091–1096

[4] Kholopov E. V., Solid State Commun., 47:3 (1983), 187–190 | DOI

[5] Marchand M., Hood K., Caillé A., Phys. Rev., B37:4 (1988), 1898–1912 | DOI | MR

[6] Takahasi H., J. Phys. Soc. Japan, 16:9 (1961), 1685–1689 | DOI

[7] Krumhansl J. A., Schrieffer J. R., Phys. Rev., B11:9 (1975), 3535–3545 | DOI

[8] Romanenko A. I., Dzhunusov A. K., Kuropyatnik I. N., Kholopov E. V., Pisma v ZhETF, 41:6 (1985), 237–239

[9] Kholopov E. V., TMF, 66:2 (1986), 290–301 | MR

[10] Baryakhtar V. G., Ivanov B. A., Sukstanskii A. L., Tartakovskaya E. V., TMF, 74:1 (1988), 46–60 | MR | Zbl

[11] Brazovskii S. A., ZhETF, 78:2 (1980), 677–699 | MR

[12] Su W. P., Schrieffer J. R., Heeger A. J., Phys. Rev., B22:4 (1980), 2099–2111

[13] de Gennes P. G., Solid State Commun., 1:6 (1963), 132–137 | DOI

[14] Jacobs A. E., Phys. Rev., B31:10 (1985), 6695–6708 | DOI

[15] Braut R., Fazovye perekhody, Mir, M., 1967

[16] Abrikosov A. A., Gorkov L. P., Dzyaloshinskii I. E., Metody kvantovoi teorii polya v statisticheskoi fizike, Fizmatgiz, M., 1962 | MR | Zbl

[17] Kholopov E. V., Phys. Lett., A120:2 (1987), 69–72 | DOI

[18] Fincher Jr. C. R., Ozaki M., Heeger A. J., Phys. Rev., B19:8 (1979), 4140–4148 | DOI

[19] Kholopov E. B., FNT, 14:4 (1988), 411–414