The group-theoretic analysis of the electron-phonon interaction in metals
Teoretičeskaâ i matematičeskaâ fizika, Tome 95 (1993) no. 3, pp. 478-496 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A group-theoretical approach to the construction of the dynamics of a uantized many-particle system with trilinear electron-phonon interaction is proposed. Fermion states are introduced by means of coherent states on the orthogonal group; a Grassmann algebra is not used. This changes the computational formalism of perturbation theory. The derivation of integral equations that determine the parameters of the superconducting state of a two-band model of a metal is considered as an example.
@article{TMF_1993_95_3_a5,
     author = {L. F. Novikov},
     title = {The group-theoretic analysis of the electron-phonon interaction in metals},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {478--496},
     year = {1993},
     volume = {95},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1993_95_3_a5/}
}
TY  - JOUR
AU  - L. F. Novikov
TI  - The group-theoretic analysis of the electron-phonon interaction in metals
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1993
SP  - 478
EP  - 496
VL  - 95
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1993_95_3_a5/
LA  - ru
ID  - TMF_1993_95_3_a5
ER  - 
%0 Journal Article
%A L. F. Novikov
%T The group-theoretic analysis of the electron-phonon interaction in metals
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1993
%P 478-496
%V 95
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1993_95_3_a5/
%G ru
%F TMF_1993_95_3_a5
L. F. Novikov. The group-theoretic analysis of the electron-phonon interaction in metals. Teoretičeskaâ i matematičeskaâ fizika, Tome 95 (1993) no. 3, pp. 478-496. http://geodesic.mathdoc.fr/item/TMF_1993_95_3_a5/

[1] Berezin F. A., Metod vtorichnogo kvantovaniya, Nauka, M., 1986 | MR | Zbl

[2] Vasilev A. N., Funktsionalnye metody v kvantovoi teorii polya i statistike, LGU, L., 1976

[3] Slavnov A. A., Faddeev L. D., Vvedenie v kvantovuyu teoriyu kalibrovochnykh polei, Nauka, M., 1978 | MR

[4] Popov V. N., Kontinualnye integraly v kvantovoi teorii polya i statisticheskoi fizike, Atomizdat, M., 1976 | MR

[5] Berezin F. A., UFN, 132:3 (1980), 497–548 | DOI | MR

[6] Perelomov A. M., Obobschennye kogerentnye sostoyaniya i ikh primeneniya, Nauka, M., 1987 | MR

[7] Novikov L. F., TMF, 54:2 (1983), 193–208 | MR

[8] Gorokhov A. V., Metody teorii grupp v zadachakh kvantovoi fiziki, KGU, Kuibyshev, 1979

[9] Davydov A. S., Kvantovaya mekhanika, Nauka, M., 1973 | MR

[10] Zhelobenko D. P., Kompaktnye gruppy Li i ikh predstavleniya, Nauka, M., 1970 | MR | Zbl

[11] Gantmakher F. R., Teoriya matrits, Nauka, M., 1967 | MR