Flat connections and polybles
Teoretičeskaâ i matematičeskaâ fizika, Tome 95 (1993) no. 2, pp. 228-238 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Poisson structure of the moduli space of flat connections on a two dimensional Riemann surface is described in terms of lattice gauge fields and Poisson–Lie groups.
@article{TMF_1993_95_2_a7,
     author = {V. V. Fock and A. A. Roslyi},
     title = {Flat connections and polybles},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {228--238},
     year = {1993},
     volume = {95},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TMF_1993_95_2_a7/}
}
TY  - JOUR
AU  - V. V. Fock
AU  - A. A. Roslyi
TI  - Flat connections and polybles
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1993
SP  - 228
EP  - 238
VL  - 95
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1993_95_2_a7/
LA  - en
ID  - TMF_1993_95_2_a7
ER  - 
%0 Journal Article
%A V. V. Fock
%A A. A. Roslyi
%T Flat connections and polybles
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1993
%P 228-238
%V 95
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1993_95_2_a7/
%G en
%F TMF_1993_95_2_a7
V. V. Fock; A. A. Roslyi. Flat connections and polybles. Teoretičeskaâ i matematičeskaâ fizika, Tome 95 (1993) no. 2, pp. 228-238. http://geodesic.mathdoc.fr/item/TMF_1993_95_2_a7/

[1] Axelrod S., Witten E., Delia Pietra S., Geometric quantization of Chern-Simons gauge theory, preprint IASSNS-HEP-89/57 | MR

[2] Witten E., On Quantum Gauge Theory in Two Dimensions, preprint IASSNSHEP-91/3

[3] Bilal A., Fock V. V., Kogan I. I., “On the origin of $W$-algebras”, Nucl. Phys., B359:2,3 (1991), 635–672 | DOI | MR

[4] Narasimhan M. S., Ramanan S., “Deformations of moduli space of vector bundles over an Algebraic Curve”, Ann. Math., 101 (1975), 31–34 | DOI | MR

[5] Atiyah M., Bott R., “The Yang-Mills Equations over a Riemann Surface”, Phil. Trans. Roy. Soc. Lond., A308 (1982), 523 | MR

[6] Beilinson A. A., Drinfeld V. G., Ginzburg V. A., Differential Operators on Moduli Space of $G$-bundles, preprint

[7] Hitchin N., “Stable Bundles and Integrable Systems”, Duke. Math. J., 54 (1987), 97–114 | DOI | MR

[8] Semenov-Tian-Shansky M. A., “Dressing Transformations and Poisson Group Actions”, Publ. RIMS Kyoto Univ., 21 (1985), 1237–1260 | DOI | MR

[9] Alekseev A., Faddeev L., Semenov-Tian-Shansky M., Volkov A., The Unraveling of the Quantum Group Structure in WZNW Theory, preprint CERN-TH-5981/91

[10] Alekseev A., Faddeev L., Semenov-Tian-Shansky M., Hidden Quantum Group inside Kac-Moody Algebra, preprint LOMI E-5-91 | MR

[11] Turaev V. G., “Algebras of Loops on Surfaces, Algebras of Knots, and Quantization”, Braid Group, Knot Theory and Statistical Mechanics, Singapore, 1989, 80–93 | MR

[12] Weinstein A., “The Local Structure of Poisson Manifolds”, J. Diff. Geom., 18 (1983), 523–557 | DOI | MR | Zbl

[13] Fock V. V., Rosly A. A., Poisson structure on moduli of flat connections on Riemann surfaces and $r$-matrix, preprint ITEP-72-92 | MR

[14] Faddeev L. D., Takhtadjan L. A., Hamiltonian Approach in soliton theory, Nauka, M., 1986 | MR

[15] Ovsienko V. Yu., Khesin B. A., “Gelfand–Dikey Bracket Symplectic Leaves and the Homotopy Classes of Nonflattened Curves”, Funkt. Anal. Apl., 24:1 (1991), 33–40 | DOI | MR