Landau--Ginzburg topological theories in the framework of GKM and equivalent hierarchies
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 95 (1993) no. 2, pp. 280-292
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We consider the deformations of “monomial solutions” to Generalized Kontsevich Model [1,2]
and establish the relation between the flows generated by these deformations with those of
$N=2$ Landau–Ginzburg topological theories. We prove that the partition function of a generic Generalized Kontsevich Model can be presented as a product of some “quasiclassical” factor and non-deformed partition function which depends only on the sum of Miwa transformed and flat times. This result is important for the restoration of explicit $p-q$ symmetry in the interpolation pattern between all the $(p,q)$-minimal string models with $c1$ and for revealing its integrable structure in $p$-direction, determined by deformations of the potential.
It also implies the way in which supersymmetric Landau–Ginzburg models are embedded into the general context of GKM. From the point of view of integrable theory these deformations present a particular case of what is called equivalent hierarchies.
			
            
            
            
          
        
      @article{TMF_1993_95_2_a12,
     author = {S. M. Kharchev and A. V. Marshakov and A. D. Mironov and A. Yu. Morozov},
     title = {Landau--Ginzburg topological theories in the framework of {GKM} and equivalent hierarchies},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {280--292},
     publisher = {mathdoc},
     volume = {95},
     number = {2},
     year = {1993},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1993_95_2_a12/}
}
                      
                      
                    TY - JOUR AU - S. M. Kharchev AU - A. V. Marshakov AU - A. D. Mironov AU - A. Yu. Morozov TI - Landau--Ginzburg topological theories in the framework of GKM and equivalent hierarchies JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1993 SP - 280 EP - 292 VL - 95 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1993_95_2_a12/ LA - ru ID - TMF_1993_95_2_a12 ER -
%0 Journal Article %A S. M. Kharchev %A A. V. Marshakov %A A. D. Mironov %A A. Yu. Morozov %T Landau--Ginzburg topological theories in the framework of GKM and equivalent hierarchies %J Teoretičeskaâ i matematičeskaâ fizika %D 1993 %P 280-292 %V 95 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_1993_95_2_a12/ %G ru %F TMF_1993_95_2_a12
S. M. Kharchev; A. V. Marshakov; A. D. Mironov; A. Yu. Morozov. Landau--Ginzburg topological theories in the framework of GKM and equivalent hierarchies. Teoretičeskaâ i matematičeskaâ fizika, Tome 95 (1993) no. 2, pp. 280-292. http://geodesic.mathdoc.fr/item/TMF_1993_95_2_a12/
