Generalized kinetic equation and its application to models of relativistic nuclear dynamics
Teoretičeskaâ i matematičeskaâ fizika, Tome 95 (1993) no. 1, pp. 74-86 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Zubarev's nonequilibrium statistical operator method is applied to problems of relativistic kinetic theory. In the framework of this method, a generalized quantum kinetic equation with collision integrals of first and second order in the interaction is obtained. It is shown that the results also remain valid for gauge theories. The possibilities of the method are illustrated by models of relativistic nuclear matter.
@article{TMF_1993_95_1_a6,
     author = {S. V. Erokhin and A. V. Prozorkevich and S. A. Smolyanskii and V. D. Toneev},
     title = {Generalized kinetic equation and its application to models of relativistic nuclear dynamics},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {74--86},
     year = {1993},
     volume = {95},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1993_95_1_a6/}
}
TY  - JOUR
AU  - S. V. Erokhin
AU  - A. V. Prozorkevich
AU  - S. A. Smolyanskii
AU  - V. D. Toneev
TI  - Generalized kinetic equation and its application to models of relativistic nuclear dynamics
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1993
SP  - 74
EP  - 86
VL  - 95
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1993_95_1_a6/
LA  - ru
ID  - TMF_1993_95_1_a6
ER  - 
%0 Journal Article
%A S. V. Erokhin
%A A. V. Prozorkevich
%A S. A. Smolyanskii
%A V. D. Toneev
%T Generalized kinetic equation and its application to models of relativistic nuclear dynamics
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1993
%P 74-86
%V 95
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1993_95_1_a6/
%G ru
%F TMF_1993_95_1_a6
S. V. Erokhin; A. V. Prozorkevich; S. A. Smolyanskii; V. D. Toneev. Generalized kinetic equation and its application to models of relativistic nuclear dynamics. Teoretičeskaâ i matematičeskaâ fizika, Tome 95 (1993) no. 1, pp. 74-86. http://geodesic.mathdoc.fr/item/TMF_1993_95_1_a6/

[1] Zubarev D. N., Neravnovesnaya statisticheskaya termodinamika, Nauka, M., 1971

[2] Toneev V. D., Shults X., Gudima K. K., Repke G., EChAYa, 17:6 (1986), 1093–1172

[3] De Groot S., Van Leuven V., Van Vert X., Relyativistskaya kineticheskaya teoriya, Mir, M., 1983 | MR

[4] Prozorkevich A. V., Smolyanskii S. A., TMF, 31:1 (1977), 118–124 | MR

[5] Pokrovskii L. A., DAN SSSR, 183:4 (1968), 806–809 ; Зубарев Д.Н., Калашников В. П., ТМФ, 5:3 (1970), 406–416 | MR

[6] Elze H.-Th., Gyulassy M., Vasak D., Nucl. Phys. B, 276 (1986), 706–728 | DOI

[7] Sisakyan A. N. i dr., TMF, 78:2 (1989), 258–266

[8] Elze H.-Th., Gyulassy M. et al., Mod. Phys. Lett. A, 2:7 (1987), 451–458 | DOI

[9] Ivanov S. I., Kornemskii G. P., Radyushkin A. V., YaF, 44:1 (1986), 230–340 | MR

[10] Ivanov S. I., Korchemsky G. P., Phys. Lett. B, 154 (1985), 191–207 | DOI

[11] Selikhov A. V., Voprosy atomnoi nauki i tekhniki, Yaderno-fizicheskie issledovaniya, 2, 1989, 7–8

[12] Feldmeier H. (ed.), Proceedings of the International Workshop on Gross Properties of Nuclei and Nuclear Excitations XVII, Hirschegg (Austria), 1989

[13] Feldmeier H. (ed.), Proceedings of the International Workshop on Gross Properties of Nuclei and Nuclear Excitations XVIII, Hirschegg (Austria), 1990

[14] Repke G., Shults X., Gudima K. K., Toneev V. D., EChAYa, 21:2 (1990), 364–418

[15] Serot B. D., Walecka J. D., Adv. Nucl. Phys., 16 (1986), 1 | MR

[16] Blättel B., Koch V., Cassing W., Mosel U., Phys. Rev. C, 38 (1988), 1767–1775 | DOI

[17] Ko C. M., Li Q., Phys. Rev. C, 37 (1988), 2270–2273 | DOI

[18] Davis J. E., Perry R. J., Phys. Rev. C, 43 (1991), 1893–1910 | DOI

[19] Kadanoff L., Baym G., Quantum Statistical Mechanics, W. A. Benjamin INC, New York, 1962 | MR | Zbl

[20] Chin S. A., Ann. Phys., 108 (1977), 301–367 | DOI

[21] Botermans W., Malfliet R., Phys. Rep. C, 198 (1990), 115–194 | DOI