Bäcklund autotransformation for the equation $u_{xt}=e^u-e^{-2u}$
Teoretičeskaâ i matematičeskaâ fizika, Tome 95 (1993) no. 1, pp. 146-159 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The system of differential equalities arisen in connection with the Bullough–Dodd–Jiber–Shabat equation $u_{xt}=e^u-e^{-2u}$ is considered. It is shown that this system realizes the differential Bäcklund autotransformation for the equation $u_{xt}=e^u-e^{-2u}$. Associated three-dimensional dynamical systems compatible on the two-dimensional invariant submanifold are investigated. Special technique for obtaining their common solutions and the three-parameter soliton of the equation $u_{xt}=e^u-e^{-2u}$ is suggested.
@article{TMF_1993_95_1_a13,
     author = {S. S. Safin and R. A. Sharipov},
     title = {B\"acklund autotransformation for the equation $u_{xt}=e^u-e^{-2u}$},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {146--159},
     year = {1993},
     volume = {95},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1993_95_1_a13/}
}
TY  - JOUR
AU  - S. S. Safin
AU  - R. A. Sharipov
TI  - Bäcklund autotransformation for the equation $u_{xt}=e^u-e^{-2u}$
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1993
SP  - 146
EP  - 159
VL  - 95
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1993_95_1_a13/
LA  - ru
ID  - TMF_1993_95_1_a13
ER  - 
%0 Journal Article
%A S. S. Safin
%A R. A. Sharipov
%T Bäcklund autotransformation for the equation $u_{xt}=e^u-e^{-2u}$
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1993
%P 146-159
%V 95
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1993_95_1_a13/
%G ru
%F TMF_1993_95_1_a13
S. S. Safin; R. A. Sharipov. Bäcklund autotransformation for the equation $u_{xt}=e^u-e^{-2u}$. Teoretičeskaâ i matematičeskaâ fizika, Tome 95 (1993) no. 1, pp. 146-159. http://geodesic.mathdoc.fr/item/TMF_1993_95_1_a13/

[1] Dodd R. K., Bullough R. K., Proc. Roy. Soc. London, A351 (1976), 499 | DOI | MR | Zbl

[2] McLaughlin D. W., Scott A. C., J. Math. Phys., 14 (1973), 1817 | DOI | MR | Zbl

[3] Andreev V. A., TMF, 79:1 (1989), 151–154 | MR

[4] Nucci M., Report on 6-th Int. Workshop on nonlinear evolution equations and dinamical systems, JINR, Dubna, 1990

[5] Sharipov R. A., Yamilov R. I., “Preobrazovanie Beklunda i konstruktsiya integriruemoi kraevoi zadachi dlya uravneniya $u_{xt}=e^u-e^{-2u}$”, Zadachi matematicheskoi fiziki i asimptotika ikh reshenii, In-t matem. BNTs UrO AN SSSR, Ufa, 1991, 66

[6] Dubrovin B. A., Krichever I. M., Novikov S. P., “Integriruemye sistemy. I”, Dinamicheskie sistemy – 4, Fundamentalnye napravleniya, 4, VINITI, M., 1985, 179 | MR | Zbl

[7] Cherdantzev I. Yu., Sharipov R. A., Intern. Journ. Modern Phys., 5A:15 (1990), 3021 | DOI | MR

[8] Its A. R., Zap. nauch. semin. LOMI, 133, 1984, 113 | MR | Zbl

[9] Mikhailov A. V., Physica 3D, 1:2 (1981), 73 | Zbl