Analytic solutions for static spherically symmetric distribution of liquid in its gravitational self-field
Teoretičeskaâ i matematičeskaâ fizika, Tome 95 (1993) no. 1, pp. 135-145
Voir la notice de l'article provenant de la source Math-Net.Ru
Tolman's differential equations for the two components of the metric tensor of a spherically symmetric distribution of liquid are reduced to equations for two functions in which the derivative of one of them is expressed in terms of the other, and not only the components of the metric tensor but also the physical characteristics of the continuous medium are expressed in terms of these functions. Arbitrary choice of the second function generates different self-consistent solutions. By means of the simplest choices of this function, two single-parameter solutions are found – one for a gas and the other for a liquid.
@article{TMF_1993_95_1_a12,
author = {D. E. Burlankov},
title = {Analytic solutions for static spherically symmetric distribution of liquid in its gravitational self-field},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {135--145},
publisher = {mathdoc},
volume = {95},
number = {1},
year = {1993},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1993_95_1_a12/}
}
TY - JOUR AU - D. E. Burlankov TI - Analytic solutions for static spherically symmetric distribution of liquid in its gravitational self-field JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1993 SP - 135 EP - 145 VL - 95 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1993_95_1_a12/ LA - ru ID - TMF_1993_95_1_a12 ER -
%0 Journal Article %A D. E. Burlankov %T Analytic solutions for static spherically symmetric distribution of liquid in its gravitational self-field %J Teoretičeskaâ i matematičeskaâ fizika %D 1993 %P 135-145 %V 95 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_1993_95_1_a12/ %G ru %F TMF_1993_95_1_a12
D. E. Burlankov. Analytic solutions for static spherically symmetric distribution of liquid in its gravitational self-field. Teoretičeskaâ i matematičeskaâ fizika, Tome 95 (1993) no. 1, pp. 135-145. http://geodesic.mathdoc.fr/item/TMF_1993_95_1_a12/