Specific heat and mean energy of a Heisenberg ferromagnet in the Green's function method
Teoretičeskaâ i matematičeskaâ fizika, Tome 95 (1993) no. 1, pp. 127-134 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A system of equations that permits calculation of the longitudinal correlation function in terms of the correlation functions of the transverse spin components is proposed. In the Green's function method, the system permits calculation of the susceptibility, mean energy, and specific heat in the same approximation as the magnetization. The experimental data on the specific heat in Gd and EuS agree qualitatively with the conclusions of the theory.
@article{TMF_1993_95_1_a11,
     author = {G. V. Vasyutinskii and A. A. Kazakov},
     title = {Specific heat and mean energy of {a~Heisenberg} ferromagnet in the {Green's} function method},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {127--134},
     year = {1993},
     volume = {95},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1993_95_1_a11/}
}
TY  - JOUR
AU  - G. V. Vasyutinskii
AU  - A. A. Kazakov
TI  - Specific heat and mean energy of a Heisenberg ferromagnet in the Green's function method
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1993
SP  - 127
EP  - 134
VL  - 95
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1993_95_1_a11/
LA  - ru
ID  - TMF_1993_95_1_a11
ER  - 
%0 Journal Article
%A G. V. Vasyutinskii
%A A. A. Kazakov
%T Specific heat and mean energy of a Heisenberg ferromagnet in the Green's function method
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1993
%P 127-134
%V 95
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1993_95_1_a11/
%G ru
%F TMF_1993_95_1_a11
G. V. Vasyutinskii; A. A. Kazakov. Specific heat and mean energy of a Heisenberg ferromagnet in the Green's function method. Teoretičeskaâ i matematičeskaâ fizika, Tome 95 (1993) no. 1, pp. 127-134. http://geodesic.mathdoc.fr/item/TMF_1993_95_1_a11/

[1] Tyablikov S. V., Metody kvantovoi teorii magnetizma, Nauka, M., 1975 | MR

[2] Rudoi Yu. G., “Sovremennoe sostoyanie metoda dvukhvremennykh funktsii Grina v kvantovoi teorii magnetizma”, Statisticheskaya fizika i kvantovaya teoriya polya, Nauka, M., 1973, 97–164 | MR

[3] Kazakov A. A., Kleshchev S. M., Phys. Stat. Sol.(b), 145 (1988), 659–667 | DOI

[4] Callen H. B., Phys. Rev., 130 (1963), 890–898 | DOI | Zbl

[5] Kazakov A. A., Kleshchev S. M., Phys. Stat. Sol.(B), 121 (1984), 539–545 | DOI

[6] McCollum D. C., Callaway J., Phys. Rev. Letters, 9 (1962), 376–377 | DOI

[7] Moruzzi V. L., Teaney D. T., Sol. Stat. Comm., 1 (1963), 127–131 | DOI

[8] Hofmann J. A., Paskin A., Tauer K. J., Weiss R. J., Phys. and Chem. Sol., 1 (1951), 45–60 | DOI | MR