Degenerate multidimensional dispersion laws
Teoretičeskaâ i matematičeskaâ fizika, Tome 95 (1993) no. 1, pp. 20-33

Voir la notice de l'article provenant de la source Math-Net.Ru

A study is made of the degeneracy of multidimensional dispersion laws $\omega ({\mathbf k})$, increasing infinitely at $|{\mathbf k}|\to \infty$ and satisfying a number of additional conditions is investigated. With the assumption of satisfying condition (4) by corresponding function of degeneracy $f(\mathbf {k})$ it is proved that only two-dimensional dispersion laws such as $\omega (p, q)=p^3\Omega (q/p)+cp\Omega _1(q/p)$ $\bigl (|p|, |q|\gg 1\bigr )$ can be generated relatively to the process $1\to 2$. Here $p\psi (q/p)=f(p, q)$ is the corresponding unique function of degeneracy. Number of conditions were found which should be satisfied by function $\Omega (\xi )$. An explicit form of the degenerate dispersion law with the polynomial function $p^3\Omega (q/p)$ is found.
@article{TMF_1993_95_1_a1,
     author = {D. D. Tskhakaya},
     title = {Degenerate multidimensional dispersion laws},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {20--33},
     publisher = {mathdoc},
     volume = {95},
     number = {1},
     year = {1993},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1993_95_1_a1/}
}
TY  - JOUR
AU  - D. D. Tskhakaya
TI  - Degenerate multidimensional dispersion laws
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1993
SP  - 20
EP  - 33
VL  - 95
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1993_95_1_a1/
LA  - ru
ID  - TMF_1993_95_1_a1
ER  - 
%0 Journal Article
%A D. D. Tskhakaya
%T Degenerate multidimensional dispersion laws
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1993
%P 20-33
%V 95
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1993_95_1_a1/
%G ru
%F TMF_1993_95_1_a1
D. D. Tskhakaya. Degenerate multidimensional dispersion laws. Teoretičeskaâ i matematičeskaâ fizika, Tome 95 (1993) no. 1, pp. 20-33. http://geodesic.mathdoc.fr/item/TMF_1993_95_1_a1/