Polynomial deformations of the Lie algebras $sl(2)$ in problems of quantum optics
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 95 (1993) no. 1, pp. 3-19
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			It is shown that specific (polynomial) deformations of Lie algebras arise naturally as dynamical symmetry algebras $g^{ds}$ of second-quantized models with nonquadratic Hamiltonians $H$ invariant with respect to certain groups $G^{\text {inv}}(H)$. Such deformations $sl_ d(2)$ of the Lie algebras $sl(2)$ are found in a number of models of quantum optics (multiphoton processes, generalized Dicke model, and frequency conversion), and ways to apply thes $sl(2)$ formalism to the solution of physics problems are indicated.
			
            
            
            
          
        
      @article{TMF_1993_95_1_a0,
     author = {V. P. Karassiov},
     title = {Polynomial deformations of the {Lie} algebras $sl(2)$ in problems of quantum optics},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {3--19},
     publisher = {mathdoc},
     volume = {95},
     number = {1},
     year = {1993},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1993_95_1_a0/}
}
                      
                      
                    TY - JOUR AU - V. P. Karassiov TI - Polynomial deformations of the Lie algebras $sl(2)$ in problems of quantum optics JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1993 SP - 3 EP - 19 VL - 95 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1993_95_1_a0/ LA - ru ID - TMF_1993_95_1_a0 ER -
V. P. Karassiov. Polynomial deformations of the Lie algebras $sl(2)$ in problems of quantum optics. Teoretičeskaâ i matematičeskaâ fizika, Tome 95 (1993) no. 1, pp. 3-19. http://geodesic.mathdoc.fr/item/TMF_1993_95_1_a0/
