Polynomial deformations of the Lie algebras $sl(2)$ in problems of quantum optics
Teoretičeskaâ i matematičeskaâ fizika, Tome 95 (1993) no. 1, pp. 3-19

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that specific (polynomial) deformations of Lie algebras arise naturally as dynamical symmetry algebras $g^{ds}$ of second-quantized models with nonquadratic Hamiltonians $H$ invariant with respect to certain groups $G^{\text {inv}}(H)$. Such deformations $sl_ d(2)$ of the Lie algebras $sl(2)$ are found in a number of models of quantum optics (multiphoton processes, generalized Dicke model, and frequency conversion), and ways to apply thes $sl(2)$ formalism to the solution of physics problems are indicated.
@article{TMF_1993_95_1_a0,
     author = {V. P. Karassiov},
     title = {Polynomial deformations of the {Lie} algebras $sl(2)$ in problems of quantum optics},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {3--19},
     publisher = {mathdoc},
     volume = {95},
     number = {1},
     year = {1993},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1993_95_1_a0/}
}
TY  - JOUR
AU  - V. P. Karassiov
TI  - Polynomial deformations of the Lie algebras $sl(2)$ in problems of quantum optics
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1993
SP  - 3
EP  - 19
VL  - 95
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1993_95_1_a0/
LA  - ru
ID  - TMF_1993_95_1_a0
ER  - 
%0 Journal Article
%A V. P. Karassiov
%T Polynomial deformations of the Lie algebras $sl(2)$ in problems of quantum optics
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1993
%P 3-19
%V 95
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1993_95_1_a0/
%G ru
%F TMF_1993_95_1_a0
V. P. Karassiov. Polynomial deformations of the Lie algebras $sl(2)$ in problems of quantum optics. Teoretičeskaâ i matematičeskaâ fizika, Tome 95 (1993) no. 1, pp. 3-19. http://geodesic.mathdoc.fr/item/TMF_1993_95_1_a0/