Few-body problem in the boundary condition model and quasipotentials
Teoretičeskaâ i matematičeskaâ fizika, Tome 94 (1993) no. 3, pp. 435-447 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The boundary condition model is reformulated in terms of singular quasipotentials. In the three-body problem, Fredholm integral equations are constructed for the densities of simple and double layers concentrated on a noncompact surface with edges. Differential equations augmented with two-sided boundary conditions are formulated for the Faddeev and Faddeev–Yakubovskii components of the wave functions of three- and four-body systems.
@article{TMF_1993_94_3_a8,
     author = {S. P. Merkur'ev and A. K. Motovilov and S. D. Yakovlev},
     title = {Few-body problem in the boundary condition model and quasipotentials},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {435--447},
     year = {1993},
     volume = {94},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1993_94_3_a8/}
}
TY  - JOUR
AU  - S. P. Merkur'ev
AU  - A. K. Motovilov
AU  - S. D. Yakovlev
TI  - Few-body problem in the boundary condition model and quasipotentials
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1993
SP  - 435
EP  - 447
VL  - 94
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1993_94_3_a8/
LA  - ru
ID  - TMF_1993_94_3_a8
ER  - 
%0 Journal Article
%A S. P. Merkur'ev
%A A. K. Motovilov
%A S. D. Yakovlev
%T Few-body problem in the boundary condition model and quasipotentials
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1993
%P 435-447
%V 94
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1993_94_3_a8/
%G ru
%F TMF_1993_94_3_a8
S. P. Merkur'ev; A. K. Motovilov; S. D. Yakovlev. Few-body problem in the boundary condition model and quasipotentials. Teoretičeskaâ i matematičeskaâ fizika, Tome 94 (1993) no. 3, pp. 435-447. http://geodesic.mathdoc.fr/item/TMF_1993_94_3_a8/

[1] Brett G., Boricious W. G., Phys. Rev., 75 (1949), 1029–1050 | DOI

[2] Feshbach H., Lomon E. L., Phys. Rev., 102 (1956), 891–904 | DOI

[3] Kim Y. E., Tubis A., Phys. Rev. C, 1 (1970), 414–422 | DOI

[4] Brayshaw D. D., Phys. Rev. C, 3 (1971), 35–45 | DOI

[5] Belyaev V. B., Zubarev A. L., Fizika, 3 (1971), 77–89

[6] Kim Y. E., Tubis A., Phys. Rev. C, 4 (1971), 693–699 | DOI

[7] Brayshaw D. D., Phys. Rev. D, 7 (1973), 1835–1843 | DOI

[8] Efimov V., YaF, 10 (1969), 107–112

[9] Efimov V. N., Shults G., Fiz. elem. chastits i at. yadra, 7 (1976), 875–915 | MR

[10] Kuzmichev V. E., Kharchenko V. F., TMF, 31:1 (1977), 75–88

[11] Merkuriev S. P., Motovilov A. K., Lett. Math. Phys., 7 (1983), 497–503 | DOI | MR | Zbl

[12] Merkurev S. P., Motovilov A. K., Teoriya kvantovykh sistem s silnym vzaimodeistviem, Kalinin, 1983

[13] Motovilov A. K., Vestn. LGU, 1983, no. 22, 76–79

[14] Merkurev S. P., Motovilov A. K., “Problema neskolkikh tel v fizike”, IX Evropeiskaya konferentsiya, Tbilisi, 1984, 48–49

[15] Motovilov A. K., Kvantovaya zadacha trekh tel v modeli granichnykh uslovii, Diss. na soisk. uch. st. kand. f.-m.-n., LGU, L., 1984

[16] Krivitskii A. A., Kuperin Yu. A., Merkurev S. P., Motovilov A. K., Yakovlev S. L., Fiz. elem. chastits i at. yadra, 17 (1986), 267–317

[17] Faddeev L. D., Trudy MIAN SSSR, 69 (1963), 1–125 | MR

[18] Lomon E. L., McMillan M., Ann. Phys., 23 (1963), 439–468 | DOI

[19] Hoenig M. M., Lomon E. L., Ann. Phys., 36 (1966), 363–434 | DOI | MR

[20] Hoenig M. M., Phys. Rev. C, 3 (1971), 1118–1127 | DOI

[21] Merkurev S. P., Yakovlev S. L., TMF, 56:1 (1983), 60–73 | MR

[22] Merkuriev S. P., Gignoux C., Lavern A., Ann. Phys., 99 (1976), 30–71 | DOI | MR

[23] Merkuriev S. P., Yakovlev S. L., Gignoux C., Nucl. Phys., 431 (1984), 125–138 | DOI | MR

[24] Schulze B., Wildenhain G., Methoden der Potentialtheorie für elliptische differential gleihungen beliebiger Ordnung, Academie-Verlag, Berlin, 1977 | MR

[25] Vladimirov B. C., Obobschennye funktsii v matematicheskoi fizike, Nauka, M., 1979 | MR