Some regularizations of the temporal gauge and propagator of the Yang–Mills field
Teoretičeskaâ i matematičeskaâ fizika, Tome 94 (1993) no. 3, pp. 408-417 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper continues earlier work of Slavnov and the author. Propagators of the Yang–Mills field are found by means of the Faddeev–Popov transition from the Coulomb to the temporal gauge with the use of two types of regularization. A comparison with already known results is made. Further possibilities are discussed.
@article{TMF_1993_94_3_a5,
     author = {G. A. Kravtsova},
     title = {Some regularizations of the temporal gauge and propagator of the {Yang{\textendash}Mills} field},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {408--417},
     year = {1993},
     volume = {94},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1993_94_3_a5/}
}
TY  - JOUR
AU  - G. A. Kravtsova
TI  - Some regularizations of the temporal gauge and propagator of the Yang–Mills field
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1993
SP  - 408
EP  - 417
VL  - 94
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1993_94_3_a5/
LA  - ru
ID  - TMF_1993_94_3_a5
ER  - 
%0 Journal Article
%A G. A. Kravtsova
%T Some regularizations of the temporal gauge and propagator of the Yang–Mills field
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1993
%P 408-417
%V 94
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1993_94_3_a5/
%G ru
%F TMF_1993_94_3_a5
G. A. Kravtsova. Some regularizations of the temporal gauge and propagator of the Yang–Mills field. Teoretičeskaâ i matematičeskaâ fizika, Tome 94 (1993) no. 3, pp. 408-417. http://geodesic.mathdoc.fr/item/TMF_1993_94_3_a5/

[1] Slavnov A. A., Faddeev L. D., Vvedenie v kvantovuyu teoriyu kalibrovochnykh polei, Nauka, M., 1988 | MR | Zbl

[2] Kummer W., Acta Phys. Austr., 41:3,4 (1975), 315–334 | MR

[3] Konetshny W., Kummer W., Nucl. Phys., B100:1 (1975), 106–124 | DOI

[4] Willemsen J. F., Phys. Rev., 17:2 (1978), 574–584 | MR

[5] Caracciolo S., Curci G., Menotti P., Phys. Lett., 113B:4 (1982), 311–314 | DOI

[6] Dahmen H. D., Sholz B., Steiner F., Phys. Lett., 117B:5 (1982), 339–341 | DOI | MR

[7] Friedman J. L., Papastamatiou N. J., Nucl. Phys., B219:1 (1983), 125–142 | DOI

[8] Slavnov A. A., Frolov S. A., TMF, 68:3 (1986), 360–367 | MR

[9] Slavnov A. A., Frolov S. A., TMF, 73:2 (1987), 199–209 | MR

[10] Haller Kurt, Phys. Rev., D36:6 (1987), 1830–1838 | MR

[11] Haller Kurt, Phys. Rev., D36:6 (1987), 1839–1845 | MR

[12] Landshoff P. V., Phys. Lett., 227B:3,4 (1989), 427–430 | DOI

[13] James K. A., Landshoff P. V., Phys. Lett., 251B:1 (1990), 167–174

[14] Leibbrandt G., Nucl. Phys., B310:2 (1988), 405–427 | DOI | MR

[15] Kravtsova F. A., Slavnov A. A., TMF, 89:2 (1991), 238–245 | MR

[16] Sholz B., Steiner F., Path Integral Quantization in the Temporal Gauge, preprint DESY, 83-055, Hamburg, 1983

[17] Leibbrandt G., Introduction to Noncovariant Gauges, preprint Mathematical Series No 108, Univ. of Guelpf, Ontario, 1986 | MR

[18] Frolov S. A., BRST-kvantovanie kalibrovochnykh teorii vo vremeni-podobnykh kalibrovkakh, preprint No 8, MIAN, M., 1989