Path reparametrization in path integrals for third-order differential equations
Teoretičeskaâ i matematičeskaâ fizika, Tome 94 (1993) no. 3, pp. 375-385
Cet article a éte moissonné depuis la source Math-Net.Ru
Using the methods of the theory of stochastic processes, the formula was obtained to transform path intagrals related with the third order differential equations in the path reparametrization (new time substitution). The integral relation between Green's functions of the third order differential equations has been derived.
@article{TMF_1993_94_3_a2,
author = {S. N. Storchak},
title = {Path reparametrization in path integrals for third-order differential equations},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {375--385},
year = {1993},
volume = {94},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1993_94_3_a2/}
}
S. N. Storchak. Path reparametrization in path integrals for third-order differential equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 94 (1993) no. 3, pp. 375-385. http://geodesic.mathdoc.fr/item/TMF_1993_94_3_a2/
[1] Storchak S. N., Preprint 90-188, IHEP, Serpukhov, 1990 | MR
[2] Hochberg K. J., Ann. Prob., 6 (1978), 433–458 ; Nishioka K., Japan. J. Math., 11 (1985), 59–102 ; Nishioka K., J. Math. Soc. Japan, 39 (1978), 209–231 ; Motoo M., “An analogue to the stochastic integral for $\partial/\partial t= -{\Delta}^2$”, Stochastic analysis and applications, Adv. Probab. Related Topics, 7, Dekker, New York, 1984, 323–338 | DOI | MR | Zbl | MR | Zbl | DOI | MR | MR
[3] Gardiner K. V., Stokhasticheskie metody v estestvennykh naukakh, Mir, M., 1986 | MR | Zbl