Derivation of Freund--Witten adelic formula for four-point Veneziano amplitudes
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 94 (1993) no. 3, pp. 355-367
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			On the base of analysis on the adelic group (Teyte Tate's formula) a regularization is proposed for the divergent infiniteproduct of $p$-adic $\Gamma$-functions
$$
\Gamma _p(\alpha )=\frac {1-p^{\alpha -1}}{1-p^{-\alpha }}\,, \quad p=2,3,5,\dots \,.
$$
Adelic formula
$$
\,{\operatorname {reg}}\,\prod _{p=2}^\infty \Gamma _p(\alpha )=\frac {\zeta (\alpha )}{\zeta (1-\alpha )},
$$
($\zeta (\alpha )$ is Riemann $\zeta$-function) is proved.
			
            
            
            
          
        
      @article{TMF_1993_94_3_a0,
     author = {V. S. Vladimirov},
     title = {Derivation of {Freund--Witten} adelic formula for four-point {Veneziano} amplitudes},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {355--367},
     publisher = {mathdoc},
     volume = {94},
     number = {3},
     year = {1993},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1993_94_3_a0/}
}
                      
                      
                    TY - JOUR AU - V. S. Vladimirov TI - Derivation of Freund--Witten adelic formula for four-point Veneziano amplitudes JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1993 SP - 355 EP - 367 VL - 94 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1993_94_3_a0/ LA - ru ID - TMF_1993_94_3_a0 ER -
V. S. Vladimirov. Derivation of Freund--Witten adelic formula for four-point Veneziano amplitudes. Teoretičeskaâ i matematičeskaâ fizika, Tome 94 (1993) no. 3, pp. 355-367. http://geodesic.mathdoc.fr/item/TMF_1993_94_3_a0/
