Algebraic integrability for the Schr\"odinger equation and finite reflection groups
Teoretičeskaâ i matematičeskaâ fizika, Tome 94 (1993) no. 2, pp. 253-275

Voir la notice de l'article provenant de la source Math-Net.Ru

Algebraic integrability of an $n$-dimensional Schrödinger equation means that it has more thann independent quantum integrals. For $n=1$, the problem of describing such equations arose in the theory of finite-gap potentials. The present paper gives a construction which associates finite reflection groups (in particular, Weyl groups of simple Lie algebras) with algebraically integrable multidimensional Schrödinger equations. These equations correspond to special values of the parameters in the generalization of the Calogero–Sutherland system proposed by Olshanetsky and Perelomov. The analytic properties of a joint eigenfunction of the corresponding commutative rings of differential operators are described. Explicit expressions are obtained for the solution of the quantum Calogero–Sutherland problem for a special value of the coupling constant.
@article{TMF_1993_94_2_a6,
     author = {A. P. Veselov and K. L. Styrkas and O. A. Chalykh},
     title = {Algebraic integrability for the {Schr\"odinger} equation and finite reflection groups},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {253--275},
     publisher = {mathdoc},
     volume = {94},
     number = {2},
     year = {1993},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1993_94_2_a6/}
}
TY  - JOUR
AU  - A. P. Veselov
AU  - K. L. Styrkas
AU  - O. A. Chalykh
TI  - Algebraic integrability for the Schr\"odinger equation and finite reflection groups
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1993
SP  - 253
EP  - 275
VL  - 94
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1993_94_2_a6/
LA  - ru
ID  - TMF_1993_94_2_a6
ER  - 
%0 Journal Article
%A A. P. Veselov
%A K. L. Styrkas
%A O. A. Chalykh
%T Algebraic integrability for the Schr\"odinger equation and finite reflection groups
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1993
%P 253-275
%V 94
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1993_94_2_a6/
%G ru
%F TMF_1993_94_2_a6
A. P. Veselov; K. L. Styrkas; O. A. Chalykh. Algebraic integrability for the Schr\"odinger equation and finite reflection groups. Teoretičeskaâ i matematičeskaâ fizika, Tome 94 (1993) no. 2, pp. 253-275. http://geodesic.mathdoc.fr/item/TMF_1993_94_2_a6/