Algebraic integrability for the Schrödinger equation and finite reflection groups
Teoretičeskaâ i matematičeskaâ fizika, Tome 94 (1993) no. 2, pp. 253-275 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Algebraic integrability of an $n$-dimensional Schrödinger equation means that it has more thann independent quantum integrals. For $n=1$, the problem of describing such equations arose in the theory of finite-gap potentials. The present paper gives a construction which associates finite reflection groups (in particular, Weyl groups of simple Lie algebras) with algebraically integrable multidimensional Schrödinger equations. These equations correspond to special values of the parameters in the generalization of the Calogero–Sutherland system proposed by Olshanetsky and Perelomov. The analytic properties of a joint eigenfunction of the corresponding commutative rings of differential operators are described. Explicit expressions are obtained for the solution of the quantum Calogero–Sutherland problem for a special value of the coupling constant.
@article{TMF_1993_94_2_a6,
     author = {A. P. Veselov and K. L. Styrkas and O. A. Chalykh},
     title = {Algebraic integrability for the {Schr\"odinger} equation and finite reflection groups},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {253--275},
     year = {1993},
     volume = {94},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1993_94_2_a6/}
}
TY  - JOUR
AU  - A. P. Veselov
AU  - K. L. Styrkas
AU  - O. A. Chalykh
TI  - Algebraic integrability for the Schrödinger equation and finite reflection groups
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1993
SP  - 253
EP  - 275
VL  - 94
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1993_94_2_a6/
LA  - ru
ID  - TMF_1993_94_2_a6
ER  - 
%0 Journal Article
%A A. P. Veselov
%A K. L. Styrkas
%A O. A. Chalykh
%T Algebraic integrability for the Schrödinger equation and finite reflection groups
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1993
%P 253-275
%V 94
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1993_94_2_a6/
%G ru
%F TMF_1993_94_2_a6
A. P. Veselov; K. L. Styrkas; O. A. Chalykh. Algebraic integrability for the Schrödinger equation and finite reflection groups. Teoretičeskaâ i matematičeskaâ fizika, Tome 94 (1993) no. 2, pp. 253-275. http://geodesic.mathdoc.fr/item/TMF_1993_94_2_a6/

[1] Dubrovin B. A., Matveev V. B., Novikov S. P., “Nelineinye uravneniya tipa KdF, konechnozonnye lineinye oparatory i abelevy mnogoobraziya”, UMN, 31:1 (1976), 55–136 | MR | Zbl

[2] Burchnall I. L., Chaundy T. W., “Commutative ordinary differential operators”, Proc. London Math. Soc.(2), 21 (1923), 420–440 | DOI | MR | Zbl

[3] Krichever I. M., “Metody algebraicheskoi geometrii v teorii nelineinykh uravnenii”, UMN, 32:6 (1977), 180–208

[4] Chalykh O. A., Veselov A. P., “Commutative rings of partial differential operators and Lie algelras”, Comm. Math. Phys., 126 (1990), 597–611 | DOI | MR | Zbl

[5] Chalykh O. A., Veselov A. P., Integrability in the theory of Schrödinger operator and harmonic analysis, preprint FIM (ETH, Zürich), 1992, to appear in Comm. Math. Phys | MR | Zbl

[6] Burbaki N., Gruppy Li i algebry Li, Mir, M., 1972 | MR | Zbl

[7] Calogero F., “Solution of the one-dimensional n-body problem with quadratic and/or inversely quadratic pair potential”, J. Math.Phys., 12 (1971), 419–436 | DOI | MR

[8] Sutherland B., “Exact results for a quantum many-body problem in one dinemsion”, Phys. Rev., A4 (1971), 2019–2021 ; Phys. Rev., A5 (1972), 1372–1376 | DOI | DOI

[9] Olshanetsky M. A., Perelomov M. M., “Quantum completely integrable systems connected with semisimple Lie algebras”, Lett. Math. Phys., 2 (1977), 7–13 | DOI | MR | Zbl

[10] Olshanetsky M. A., Perelomov A. M., “Quantum integrable systems related to Lie algebras”, Phys. Rep., 94 (1983), 313–404 | DOI | MR

[11] Moser J., “Three integrable hamiltomian systems connected with isospectral deformations”, Adv. Math., 16 (1978), 1–23 | MR

[12] Airault H., McKean H., Moser J., “Rational and elliptic solutions of the KdV equation and a related many-body problem”, Comm. Pure Appl. Math., 30 (1977), 94–148 | DOI | MR

[13] Krichever I. M., “O ratsionalnykh resheniyakh uravneniya Kadomtseva–Petviashvili i ob integriruemykh sistemakh chastits na pryamoi”, Funkts. analiz i prilozh., 12:1 (1978), 76–78 | MR | Zbl

[14] Olshanetskii M. A., Perelomov A. M., “Kvantovye sistemy, svyazannye s sistemami kornei i radialnye chasti operatorov Laplasa”, Funkts. analiz i prilozh., 12 (1978), 57–65 | MR

[15] Veselov A. P., Chalykh O. A., “Yavnye formuly dlya sfericheskikh funktsii simmetricheskikh prostranstv tipa AII”, Funkts. analiz i prilozh., 26:1 (1992), 74–76 | MR

[16] Heckman G. J., Opdam E. M., “Root systems and hypergeometric functions. I”, Composite Math., 64 (1987), 329–352 | MR | Zbl

[17] Heckman G. J., “Root systems and hypergeometric functions. II”, Compositio Math., 64 (1987), 353–373 | MR | Zbl

[18] Opdam E. M., “Root systems and hypergeometric functions. III”, Compositio Math., 67 (1988), 21–47 ; “IV”, 191–209 | MR | MR | Zbl

[19] Opdam E. M., “Some applications of hypergeometric shift operators”, Invent. Math., 98 (1989), 1–18 | DOI | MR | Zbl

[20] Heckman G. J., “An elementary approach to the hypergeometric shift operators of Opdam”, Invent. Math., 103 (1991), 341–350 | DOI | MR | Zbl

[21] Kozlov V. V., “O polinomialnykh integralakh sistemy vzaimodeistvuyuschikh chastits”, DAN SSSR, 301:4 (1988), 785–788 | MR

[22] Feldman J., Knörrer H., Trubowitz E., There are no two-dimensional Lamé equations, preprint FIM (ETH, Zürich), 1991

[23] Adler M., van Moerbeke P., Algebraic integrable systems: a systematic approach. Perspectives in Math., AP, Boston, 1989

[24] Chalykh O. A., “Ob odnoi konstruktsii kommutativnykh kolets differentsialnykh operatorov”, Mat. zametki, 53:3 (1993) | MR | Zbl

[25] Styrkas K. L., Kommutativnye koltsa differentsialnykh operatorov algebry Li i gruppy, porozhdennye otrazheniyami, Diplomnaya rabota, MGU, 1992

[26] Heckman G. J., “A remark on the Dunkl differential-difference operators”, Proc. of the Bowdoin conference on harmonic analysis on reductive groups, 1989

[27] Berezin F. A., “Operatory Laplasa na poluprostykh gruppakh Li”, Trudy Mosk. Mat. obsch-va, 6 (1957), 371–463 | MR | Zbl