@article{TMF_1993_94_2_a6,
author = {A. P. Veselov and K. L. Styrkas and O. A. Chalykh},
title = {Algebraic integrability for the {Schr\"odinger} equation and finite reflection groups},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {253--275},
year = {1993},
volume = {94},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1993_94_2_a6/}
}
TY - JOUR AU - A. P. Veselov AU - K. L. Styrkas AU - O. A. Chalykh TI - Algebraic integrability for the Schrödinger equation and finite reflection groups JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1993 SP - 253 EP - 275 VL - 94 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_1993_94_2_a6/ LA - ru ID - TMF_1993_94_2_a6 ER -
%0 Journal Article %A A. P. Veselov %A K. L. Styrkas %A O. A. Chalykh %T Algebraic integrability for the Schrödinger equation and finite reflection groups %J Teoretičeskaâ i matematičeskaâ fizika %D 1993 %P 253-275 %V 94 %N 2 %U http://geodesic.mathdoc.fr/item/TMF_1993_94_2_a6/ %G ru %F TMF_1993_94_2_a6
A. P. Veselov; K. L. Styrkas; O. A. Chalykh. Algebraic integrability for the Schrödinger equation and finite reflection groups. Teoretičeskaâ i matematičeskaâ fizika, Tome 94 (1993) no. 2, pp. 253-275. http://geodesic.mathdoc.fr/item/TMF_1993_94_2_a6/
[1] Dubrovin B. A., Matveev V. B., Novikov S. P., “Nelineinye uravneniya tipa KdF, konechnozonnye lineinye oparatory i abelevy mnogoobraziya”, UMN, 31:1 (1976), 55–136 | MR | Zbl
[2] Burchnall I. L., Chaundy T. W., “Commutative ordinary differential operators”, Proc. London Math. Soc.(2), 21 (1923), 420–440 | DOI | MR | Zbl
[3] Krichever I. M., “Metody algebraicheskoi geometrii v teorii nelineinykh uravnenii”, UMN, 32:6 (1977), 180–208
[4] Chalykh O. A., Veselov A. P., “Commutative rings of partial differential operators and Lie algelras”, Comm. Math. Phys., 126 (1990), 597–611 | DOI | MR | Zbl
[5] Chalykh O. A., Veselov A. P., Integrability in the theory of Schrödinger operator and harmonic analysis, preprint FIM (ETH, Zürich), 1992, to appear in Comm. Math. Phys | MR | Zbl
[6] Burbaki N., Gruppy Li i algebry Li, Mir, M., 1972 | MR | Zbl
[7] Calogero F., “Solution of the one-dimensional n-body problem with quadratic and/or inversely quadratic pair potential”, J. Math.Phys., 12 (1971), 419–436 | DOI | MR
[8] Sutherland B., “Exact results for a quantum many-body problem in one dinemsion”, Phys. Rev., A4 (1971), 2019–2021 ; Phys. Rev., A5 (1972), 1372–1376 | DOI | DOI
[9] Olshanetsky M. A., Perelomov M. M., “Quantum completely integrable systems connected with semisimple Lie algebras”, Lett. Math. Phys., 2 (1977), 7–13 | DOI | MR | Zbl
[10] Olshanetsky M. A., Perelomov A. M., “Quantum integrable systems related to Lie algebras”, Phys. Rep., 94 (1983), 313–404 | DOI | MR
[11] Moser J., “Three integrable hamiltomian systems connected with isospectral deformations”, Adv. Math., 16 (1978), 1–23 | MR
[12] Airault H., McKean H., Moser J., “Rational and elliptic solutions of the KdV equation and a related many-body problem”, Comm. Pure Appl. Math., 30 (1977), 94–148 | DOI | MR
[13] Krichever I. M., “O ratsionalnykh resheniyakh uravneniya Kadomtseva–Petviashvili i ob integriruemykh sistemakh chastits na pryamoi”, Funkts. analiz i prilozh., 12:1 (1978), 76–78 | MR | Zbl
[14] Olshanetskii M. A., Perelomov A. M., “Kvantovye sistemy, svyazannye s sistemami kornei i radialnye chasti operatorov Laplasa”, Funkts. analiz i prilozh., 12 (1978), 57–65 | MR
[15] Veselov A. P., Chalykh O. A., “Yavnye formuly dlya sfericheskikh funktsii simmetricheskikh prostranstv tipa AII”, Funkts. analiz i prilozh., 26:1 (1992), 74–76 | MR
[16] Heckman G. J., Opdam E. M., “Root systems and hypergeometric functions. I”, Composite Math., 64 (1987), 329–352 | MR | Zbl
[17] Heckman G. J., “Root systems and hypergeometric functions. II”, Compositio Math., 64 (1987), 353–373 | MR | Zbl
[18] Opdam E. M., “Root systems and hypergeometric functions. III”, Compositio Math., 67 (1988), 21–47 ; “IV”, 191–209 | MR | MR | Zbl
[19] Opdam E. M., “Some applications of hypergeometric shift operators”, Invent. Math., 98 (1989), 1–18 | DOI | MR | Zbl
[20] Heckman G. J., “An elementary approach to the hypergeometric shift operators of Opdam”, Invent. Math., 103 (1991), 341–350 | DOI | MR | Zbl
[21] Kozlov V. V., “O polinomialnykh integralakh sistemy vzaimodeistvuyuschikh chastits”, DAN SSSR, 301:4 (1988), 785–788 | MR
[22] Feldman J., Knörrer H., Trubowitz E., There are no two-dimensional Lamé equations, preprint FIM (ETH, Zürich), 1991
[23] Adler M., van Moerbeke P., Algebraic integrable systems: a systematic approach. Perspectives in Math., AP, Boston, 1989
[24] Chalykh O. A., “Ob odnoi konstruktsii kommutativnykh kolets differentsialnykh operatorov”, Mat. zametki, 53:3 (1993) | MR | Zbl
[25] Styrkas K. L., Kommutativnye koltsa differentsialnykh operatorov algebry Li i gruppy, porozhdennye otrazheniyami, Diplomnaya rabota, MGU, 1992
[26] Heckman G. J., “A remark on the Dunkl differential-difference operators”, Proc. of the Bowdoin conference on harmonic analysis on reductive groups, 1989
[27] Berezin F. A., “Operatory Laplasa na poluprostykh gruppakh Li”, Trudy Mosk. Mat. obsch-va, 6 (1957), 371–463 | MR | Zbl