Paragrassmann differential calculus
Teoretičeskaâ i matematičeskaâ fizika, Tome 94 (1993) no. 2, pp. 213-231

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper significantly extends and generalizes the paragrassmann calculus of our previous paper [1]. Here we discuss explicit general constructions for paragrassmann calculus with one and many variables. For one variable, nondegenerate differentiation algebras are identified and shown to be equivalent to the algebra of $(p+1)\times (p+1)$ complex matrices. If $(p+1)$ is a prime integer, the algebra is nondegenerate and so unique. We then give a general construction of many-variable diffeentiation algebras. Some particular examples are related to multi-parametric quantum deformations of the harmonic oscillators.
@article{TMF_1993_94_2_a3,
     author = {A. T. Filippov and A. P. Isaev and A. B. Kurdikov},
     title = {Paragrassmann differential calculus},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {213--231},
     publisher = {mathdoc},
     volume = {94},
     number = {2},
     year = {1993},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TMF_1993_94_2_a3/}
}
TY  - JOUR
AU  - A. T. Filippov
AU  - A. P. Isaev
AU  - A. B. Kurdikov
TI  - Paragrassmann differential calculus
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1993
SP  - 213
EP  - 231
VL  - 94
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1993_94_2_a3/
LA  - en
ID  - TMF_1993_94_2_a3
ER  - 
%0 Journal Article
%A A. T. Filippov
%A A. P. Isaev
%A A. B. Kurdikov
%T Paragrassmann differential calculus
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1993
%P 213-231
%V 94
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1993_94_2_a3/
%G en
%F TMF_1993_94_2_a3
A. T. Filippov; A. P. Isaev; A. B. Kurdikov. Paragrassmann differential calculus. Teoretičeskaâ i matematičeskaâ fizika, Tome 94 (1993) no. 2, pp. 213-231. http://geodesic.mathdoc.fr/item/TMF_1993_94_2_a3/