Vector addition theorems and Baker–Akhiezer functions
Teoretičeskaâ i matematičeskaâ fizika, Tome 94 (1993) no. 2, pp. 200-212 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Functional equations that arise naturally in various problems of modern mathematical physics are discussed. We introduce the concepts of an $N$-dimensional addition theorem for functions of a scalar argument and Cauchy equations of rank $N$ for a function of a $g$-dimensional argument that generalize the classical functional Cauchy equation. It is shown that for $N=2$ the general analytic solution of these equations is determined by the Baker–Akhiezer function of an algebraic curve of genus 2. It is also shown that functions give solutions of a Cauchy equation of rank $N$ for functions of a $g$-dimensional argument with $N\le 2^{g}$ in the case of a general $g$-dimensional Abelian variety and $N\le g$ in the case of a Jacobian variety of an algebra curve of genusg. It is conjectured that a functional Cauchy equation of rankg for a function of a $g$-dimensional argument is characteristic for functions of a Jacobian variety of an algebraic curve of genusg, i. e., solves the Riemann–Schottky problem.
@article{TMF_1993_94_2_a2,
     author = {V. M. Buchstaber and I. M. Krichever},
     title = {Vector addition theorems and {Baker{\textendash}Akhiezer} functions},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {200--212},
     year = {1993},
     volume = {94},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1993_94_2_a2/}
}
TY  - JOUR
AU  - V. M. Buchstaber
AU  - I. M. Krichever
TI  - Vector addition theorems and Baker–Akhiezer functions
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1993
SP  - 200
EP  - 212
VL  - 94
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1993_94_2_a2/
LA  - ru
ID  - TMF_1993_94_2_a2
ER  - 
%0 Journal Article
%A V. M. Buchstaber
%A I. M. Krichever
%T Vector addition theorems and Baker–Akhiezer functions
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1993
%P 200-212
%V 94
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1993_94_2_a2/
%G ru
%F TMF_1993_94_2_a2
V. M. Buchstaber; I. M. Krichever. Vector addition theorems and Baker–Akhiezer functions. Teoretičeskaâ i matematičeskaâ fizika, Tome 94 (1993) no. 2, pp. 200-212. http://geodesic.mathdoc.fr/item/TMF_1993_94_2_a2/

[1] Cauchy A. L., Cours d'analyse de l'Ecole Polytechnique, p. 1, Analyse algebraique, 103, 1821 ; Oeuvres complets, p. 2, 3, 98–105 | MR | Zbl

[2] Abel N. H., “Méthode général e pour trouver des fonctions d'une seule quantite variable, lorsqu'une propriété de ces fonctions est exprimee par une equation entre deux variables”, Magazin for Naturvidenskaberne, Cristiana, I:1 (1823); Oever completes, v. 1, 1881, 1–10

[3] Frobenius G., Stikelberger, “Ueber die Addion und Multiplication der elliptischen Functionen”, Jour. Reine Angew. Math., 88 (1880), 146–184 | MR

[4] Baker H. F., “Note on the foregoing paper “Commutative ordinare differential operators””, Proc. Royal Soc. London, 118 (1928), 584–593 | DOI | Zbl

[5] Burchnal J. L., Chaundy T. W., “Commutative ordinary differential operators. I”, Proc. London Math. Soc., 21 (1922), 420–440 ; “II”, Proc. Royal Soc. London, 118 (1928), 557–583 | DOI | MR | DOI | Zbl

[6] Krichever I. M., “Algebro-geometricheskaya konstruktsiya uravnenii Zakharova–Shabata i ikh periodicheskikh reshenii”, DAN SSSR, 2:227 (1976), 291–294 | Zbl

[7] Krichever I. M., “Integrirovanie nelineinykh uravnenii metodami algebraicheskoi geometrii”, Funktsionalnyi analiz i ego prilozheniya, 11:1 (1977), 15–31 | MR | Zbl

[8] Dubrovin V. A., Matveev V. V., Novikov S. P., “Nelineinye uravneniya tipa Kortevega-de Friza, konechnozonnye operatory i Abelevy mnogoobraziya”, UMN, 31:1 (1976), 55–136 | MR | Zbl

[9] Zakharov V. E., Manakov S. V., Novikov S. P., Pitaevskii L. P., Teoriya solitonov. Metod obratnoi zadachi, Nauka, M., 1980 | MR

[10] Krichever I. M., Novikov S. P., “Golomorfnye rassloeniya nad algebraicheskimi krivymi i nelineinye uravneniya”, UMN, 35:6 (1980) | MR

[11] Dubrovin B. A., “Teta-funktsii i nelineinye uravneniya”, UMN, 36:2 (1981), 11–80 | MR | Zbl

[12] Dubrovin B. A., Krichever I. M., Novikov S. P., “Integriruemye sistemy”, Itogi nauki i tekhniki. Fundamentalnye napravleniya, 4, VINITI, M., 1985, 179–285 | MR

[13] Krichever I. M., “Spektralnaya teoriya dvumernykh periodicheskikh operatorov i ee prilozheniya”, UMN, 44:2 (1989), 121–184 | MR | Zbl

[14] Krichever I. M., “Ellipticheskie resheniya uravneniya Kadomtseva–Petviashvili i integriruemye sistemy chastits”, Funktsionalnyi analiz i prilozh., 14:4 (1980), 45–54 | MR | Zbl

[15] Calogero F., “One-dimensional many-body problems with pair interactions whose exact ground-state wave function is of product type”, Lettere il Nuovo Cimento, 13:13 (1975), 507–511 | DOI | MR

[16] Bruschi M., Calogero F., “The Lax representation for an integrable class of relativistic dynamical systems”, Commun. Math. Phys., 109 (1987), 481–492 | DOI | MR | Zbl

[17] Bruschi M., Calogero F., “General analytic solution of certain functional equations of addition type”, Siam J. Math. Anal., 21:4 (1990), 1019–1030 | DOI | MR | Zbl

[18] Perelomov A. M., Integriruemye sistemy klassicheskoi mekhaniki i algebry Li, Nauka, M., 1990 | Zbl

[19] Buchstaber V. M., Report on scientific activity during visit at the MPI from 06.04.92 to 04.07.92, MPI, Bonn, 1992

[20] Hirzebruch F., Topological methods in algebraic geometry, Springer-Verlag, New York, 1966 | MR

[21] Krichever I. M., “Obobschennye ellipticheskie rody i funktsii Beikera–Akhiezera”, Matematicheskie zametki, 47 (1990), 132–142 | MR | Zbl

[22] Ochanine S., “Sur les genres multiplicatifs difinis par der integrales elliptiques”, Topology, 26 (1987), 143–151 | DOI | MR | Zbl

[23] Witten E., “Elliptic Genera and Quantum Field Theory”, Comm. Math Phys., 109 (1987), 525–536 | DOI | MR | Zbl

[24] Taubes C., “$S^1$-actions and elliptic genera”, Comm. Math. Phys., 122 (1989), 455–526 | DOI | MR | Zbl

[25] Bott R., Taubes C., “On the rigidity theorem of Witten”, J. Amer. Math. Soc., 2:2 (1989), 137–186 | DOI | MR | Zbl

[26] Bukhshtaber V. M., Kholodov A. N., “Formalnye gruppy, funktsionalnye uravneniya i obobschennye teorii kogomologii”, Mat. sb., 181:1 (1990), 75–94 | MR | Zbl

[27] Bukhshtaber V. M., “Funktsionalnye uravneniya, assotsiirovannye s teoremami slozheniya dlya ellipticheskikh funktsii i dvuznachnye algebraicheskie gruppy”, UMN, 45:3 (1990), 213–215 | MR | Zbl

[28] Shiota T., “Characterization of Jacobian varieties in terms of soliton equations”, Inv. Math., 83 (1986), 333–382 | DOI | MR | Zbl