Quantum groups, $q$ oscillators, and covariant algebras
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 94 (1993) no. 2, pp. 193-199
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The physical interpretation of the basic concepts of the theory of covariant groups–coproducts, representations and corepresentations, action and coaction–is discussed for the examples of the simplest $q$ deformed objects (quantum groups and algebras, $q$ oscillators, and comodule algebras). It is shown that the reduction of the covariant algebra of quantum second-rank tensors includes the algebras of theq oscillator and quantum sphere. A special case of covariant algebra corresponds to the braid group in a space with nontrivial topology.
			
            
            
            
          
        
      @article{TMF_1993_94_2_a1,
     author = {P. P. Kulish},
     title = {Quantum groups, $q$ oscillators, and covariant algebras},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {193--199},
     publisher = {mathdoc},
     volume = {94},
     number = {2},
     year = {1993},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1993_94_2_a1/}
}
                      
                      
                    P. P. Kulish. Quantum groups, $q$ oscillators, and covariant algebras. Teoretičeskaâ i matematičeskaâ fizika, Tome 94 (1993) no. 2, pp. 193-199. http://geodesic.mathdoc.fr/item/TMF_1993_94_2_a1/
