Quantum groups, $q$ oscillators, and covariant algebras
Teoretičeskaâ i matematičeskaâ fizika, Tome 94 (1993) no. 2, pp. 193-199

Voir la notice de l'article provenant de la source Math-Net.Ru

The physical interpretation of the basic concepts of the theory of covariant groups–coproducts, representations and corepresentations, action and coaction–is discussed for the examples of the simplest $q$ deformed objects (quantum groups and algebras, $q$ oscillators, and comodule algebras). It is shown that the reduction of the covariant algebra of quantum second-rank tensors includes the algebras of theq oscillator and quantum sphere. A special case of covariant algebra corresponds to the braid group in a space with nontrivial topology.
@article{TMF_1993_94_2_a1,
     author = {P. P. Kulish},
     title = {Quantum groups, $q$ oscillators, and covariant algebras},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {193--199},
     publisher = {mathdoc},
     volume = {94},
     number = {2},
     year = {1993},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1993_94_2_a1/}
}
TY  - JOUR
AU  - P. P. Kulish
TI  - Quantum groups, $q$ oscillators, and covariant algebras
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1993
SP  - 193
EP  - 199
VL  - 94
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1993_94_2_a1/
LA  - ru
ID  - TMF_1993_94_2_a1
ER  - 
%0 Journal Article
%A P. P. Kulish
%T Quantum groups, $q$ oscillators, and covariant algebras
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1993
%P 193-199
%V 94
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1993_94_2_a1/
%G ru
%F TMF_1993_94_2_a1
P. P. Kulish. Quantum groups, $q$ oscillators, and covariant algebras. Teoretičeskaâ i matematičeskaâ fizika, Tome 94 (1993) no. 2, pp. 193-199. http://geodesic.mathdoc.fr/item/TMF_1993_94_2_a1/