Solution of the equations of the relativistic theory of gravitation for equilibrium massive bodies with allowance for their equations of state
Teoretičeskaâ i matematičeskaâ fizika, Tome 94 (1993) no. 1, pp. 122-139 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The solutions of the equations of the relativistic theory of gravitation that describe the equilibrium state of a spherically symmetric isolated massive body are analyzed. It is shown that if the mass of the body is greater than the critical value equilibrium states do not exist; the minimum sizes of such bodies are always greater than the Schwarzschild sizes. We investigate the equilibrium sizes, the structure of the exterior gravitational field, and the distributions of the interior pressures and densities in the case of characteristic astrophysical objects such as the earth, Jupiter, the sun, neutron stars, and white dwarfs. The results agree satisfactorily with observations.
@article{TMF_1993_94_1_a8,
     author = {Yu. M. Loskutov and K. V. Parfenov},
     title = {Solution of the equations of the relativistic theory of gravitation for equilibrium massive bodies with allowance for their equations of state},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {122--139},
     year = {1993},
     volume = {94},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1993_94_1_a8/}
}
TY  - JOUR
AU  - Yu. M. Loskutov
AU  - K. V. Parfenov
TI  - Solution of the equations of the relativistic theory of gravitation for equilibrium massive bodies with allowance for their equations of state
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1993
SP  - 122
EP  - 139
VL  - 94
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1993_94_1_a8/
LA  - ru
ID  - TMF_1993_94_1_a8
ER  - 
%0 Journal Article
%A Yu. M. Loskutov
%A K. V. Parfenov
%T Solution of the equations of the relativistic theory of gravitation for equilibrium massive bodies with allowance for their equations of state
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1993
%P 122-139
%V 94
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1993_94_1_a8/
%G ru
%F TMF_1993_94_1_a8
Yu. M. Loskutov; K. V. Parfenov. Solution of the equations of the relativistic theory of gravitation for equilibrium massive bodies with allowance for their equations of state. Teoretičeskaâ i matematičeskaâ fizika, Tome 94 (1993) no. 1, pp. 122-139. http://geodesic.mathdoc.fr/item/TMF_1993_94_1_a8/

[1] Oppenheimer D. R., Volkoff G. M., Phys. Rev., 55:4 (1939), 374–381 | DOI | Zbl

[2] Hamada T., Salpeter F. I., Astroph. J., 134 (1961), 683–699 | DOI | MR

[3] Baym G., Pethic C., Ann. Rev. Astron. Astroph., 17 (1979), 415–443 | DOI

[4] Shapiro S. L., Tyukolski S. A., Chernye dyry, belye karliki i neitronnye zvezdy, Mir, M., 1985

[5] Logunov A. A., Mestvirishvili M. A., Osnovy relyativistskoi teorii gravitatsii, Izd-vo MGU, M., 1985 | MR | Zbl

[6] Logunov A. A., Loskutov Yu. M., Mestvirishvili M. A., UFN, 155:3 (1988), 369–395 | DOI

[7] Logunov A. A., Loskutov Yu. M., Mestvirishvili M. A., Intern. J. Mod. Phys. (A), 3:4 (1988), 2067–2099 | DOI | MR

[8] Logunov A. A., UFN, 160:8 (1990), 132–143 | MR

[9] Genk A. V., TMF, 86:1 (1991), 142–156 | MR

[10] Unt V. A., Izv. VUZov. Fizika, 1961, no. 4, 3–8

[11] Avakyan P. M., Tochnye resheniya uravnenii gravitatsionnogo polya i ikh fizicheskaya interpretatsiya, Tartu, 1988, 22–24

[12] Veinberg S., Gravitatsiya i kosmologiya, Mir, M., 1975

[13] Zharkov V. N., Trubitsyn V. P., Samsonenko L. V., Fizika Zemli i planet, Nauka, M., 1971

[14] Severnyi A. B., Nekotorye problemy fiziki Solntsa, Nauka, M., 1988