Analytic properties of Gibbs states for a class of one-dimensional lattice quantum systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 94 (1993) no. 1, pp. 98-121 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Analyticity of the free energy and Gibbs state with respect to the parameter $\beta >0$ (the inverse temperature) is established for a certain class of one-dimensional lattice quantum bosonic systems with long-range potential. The method of proof is a modification for the quantum case of the well-known method of cluster expansions.
@article{TMF_1993_94_1_a7,
     author = {N. U. Khudoinazarov},
     title = {Analytic properties of {Gibbs} states for a~class of one-dimensional lattice quantum systems},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {98--121},
     year = {1993},
     volume = {94},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1993_94_1_a7/}
}
TY  - JOUR
AU  - N. U. Khudoinazarov
TI  - Analytic properties of Gibbs states for a class of one-dimensional lattice quantum systems
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1993
SP  - 98
EP  - 121
VL  - 94
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1993_94_1_a7/
LA  - ru
ID  - TMF_1993_94_1_a7
ER  - 
%0 Journal Article
%A N. U. Khudoinazarov
%T Analytic properties of Gibbs states for a class of one-dimensional lattice quantum systems
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1993
%P 98-121
%V 94
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1993_94_1_a7/
%G ru
%F TMF_1993_94_1_a7
N. U. Khudoinazarov. Analytic properties of Gibbs states for a class of one-dimensional lattice quantum systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 94 (1993) no. 1, pp. 98-121. http://geodesic.mathdoc.fr/item/TMF_1993_94_1_a7/

[1] Campanino M., Capocaccia D., Olivieri E., J. Stat. Phys., 33:2 (1981), 437–476 | DOI | MR

[2] Olivieri E., Picco D., Suhov Yu. M., On the Gibbs state for one-dimensional lattice boson systems, preprint, Marseille-Lumini, 1990

[3] Aizenman M., Newman C. M., Commun. Math. Phys., 107:4 (1986), 611–647 | DOI | MR | Zbl

[4] Aizenman M., Chayes J. T., Chayes L., Newman C. M., J. Stat. Phys., 50:1 (1988), 1–40 | DOI | MR | Zbl

[5] Imbrie J. Z., Newman C. M., Commun. Math. Phys., 118:2 (1988), 303–336 | DOI | MR

[6] Albeverio S. A., Hoegh-Krohn R. J., “Mathematical Theory of Feynman Path Integrals”, Lecture Notes in Mathematics, 523, Springer-Verlag, Berlin, Heidelberg, New York, 1976, 1–131 | DOI | MR

[7] Carmona R., “Random Shredinger operators”, Lecture Notes in Mathematics, 1180, Springer-Verlag, Berlin, Heidelberg, New York, 1986, 1–124 | DOI | MR

[8] Shuhov A. G., Suhov Yu. M., Teslenko A. V., Towards Time-dynamics for Bosonic Systems in Quantum Statistical Mechanics, preprint DIAS-STP-89-29, Dublin | MR

[9] Dobrushin R. L., Commun. Math. Phys., 32:4 (1973), 269–289 | DOI | MR

[10] Dobrushin R. L., Matem. sbornik, 93:1 (1974), 29–49 | Zbl

[11] Sukhov Yu. M., DAN SSSR, 195:5 (1970), 1042–1045

[12] Ginibre J., “Statistical mechanics and quantum Held theory”, Les Houches summer school of theoretical physics, Gordon Breach, New York, London, Paris, 1970, 327–427

[13] Krein M. G., Rutman M. A., UMN, 3:1 (1948), 3–98 | MR

[14] Kotecky R., Preiss D., Commun. Math. Phys., 103:3 (1986), 491–498 | DOI | MR | Zbl

[15] Malyshev V. A., Minlos R. A., Gibbovskie sluchainye polya, Nauka, M., 1985 | MR

[16] Ryuel D., Statisticheskaya mekhanika: Strogie rezultaty, Mir, M., 1971

[17] Bratteli U., Robinson D., Operatornye algebry i kvantovaya statisticheskaya mekhanika, Mir, M., 1982 | MR | Zbl

[18] Ruelle D., Commun. Math. Phys., 18:1 (1970), 127–159 | DOI | MR | Zbl