Three-dimensional Yang–Mills–Higgs equations in gauge-invariant variables
Teoretičeskaâ i matematičeskaâ fizika, Tome 94 (1993) no. 1, pp. 66-75 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A formulation of three-dimensional $SU(2)$- and $SO(1, 2)$ Yang–Mills theories in the gauge-invariant variables $G_{ij} =\hbox {tr}^*F_i^*F_j$ is proposed. It is shown that the tensor $G_{ij}$ satisfies three-dimensional Einstein equations with simple right-hand side and $G_{ij}$ playing the role of a metric. This result is generalized to the case of a system of Yang–Mills–Higgs fields.
@article{TMF_1993_94_1_a4,
     author = {F. A. Lunev},
     title = {Three-dimensional {Yang{\textendash}Mills{\textendash}Higgs} equations in gauge-invariant variables},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {66--75},
     year = {1993},
     volume = {94},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1993_94_1_a4/}
}
TY  - JOUR
AU  - F. A. Lunev
TI  - Three-dimensional Yang–Mills–Higgs equations in gauge-invariant variables
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1993
SP  - 66
EP  - 75
VL  - 94
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1993_94_1_a4/
LA  - ru
ID  - TMF_1993_94_1_a4
ER  - 
%0 Journal Article
%A F. A. Lunev
%T Three-dimensional Yang–Mills–Higgs equations in gauge-invariant variables
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1993
%P 66-75
%V 94
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1993_94_1_a4/
%G ru
%F TMF_1993_94_1_a4
F. A. Lunev. Three-dimensional Yang–Mills–Higgs equations in gauge-invariant variables. Teoretičeskaâ i matematičeskaâ fizika, Tome 94 (1993) no. 1, pp. 66-75. http://geodesic.mathdoc.fr/item/TMF_1993_94_1_a4/

[1] Leznov A. N., Savelev M. V., Commun. Math. Phys., 74:2 (1979), 119–131 | MR

[2] Novikov I. D., Frolov V. P., Fizika chernykh dyr, Nauka, M., 1986

[3] Lunev F. A., TMF., 84:3 (1990), 411–418 ; 86:2 (1991), 191–201 ; Phys. Lett., B 264:3–4 (1991), 307–311 | MR | MR | DOI | MR

[4] Gribov V., Nucl. Phys., B 139:1 (1978), 1–34 | DOI | MR

[5] Slavnov A. A., Faddeev L. D., Vvedenie v teoriyu kalibrovochnykh polei, Nauka, M., 1988 | MR | Zbl

[6] Polyakov A. M., Nucl. Phys., B 164:1 (1979), 171–190 ; Makeenko Yu. M., Migdal A. A., Nucl. Phys., B 188:2 (1981), 269–281 | MR | DOI | MR

[7] Rzazewsky R., Woldkiewicz K., Ann. Phys., 130:1 (1980), 1–19 ; Gu Y., Phys. Lett., A 153:5 (1991), 476–481 | DOI | MR

[8] Kaempffer F. A., “Spinor electrodynamics as a dynamics of currents”, Phys. Rev. D (3), 23:4 (1981), 918–921 | DOI | MR

[9] Ovsyannikov L. V., Gruppovoi analiz differentsialnykh uravnenii, Nauka, M., 1978 | MR

[10] DeWitt B. S., Dynamical Theory Groups and Fields, Gordon and Breach, N. Y., 1985 | MR

[11] Witten E., Nucl. Phys., B 264:1 (1986), 291–391 ; Crcnokovic C., Witten E., 300 Years of Gravitation, eds. S. Hawking and W. Israel, Camb. Univ. Press, Cambrige, 1987 | DOI | MR

[12] Penrouz R., Rindler V., Spinory v prostranstve-vremeni, t. 2, Mir, M., 1988 | MR