Nonclassical analogs of solitons in quantum field theory
Teoretičeskaâ i matematičeskaâ fizika, Tome 94 (1993) no. 1, pp. 52-65 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The possible existence of a series of quantum copies of classical soliton solutions is discussed, which don't exist when the effective Planck constant of the theory $\gamma$ tends to zero. Within the conventional weak coupling expansion in $\sqrt {\gamma }$ such non-classical solitons are of order $O(\sqrt {\gamma })$ in energy and therefore lie in between the true classical solutions and true secondary quantized excitations. The analytic results concerning the shape functions, masses and stability properties of such excitations are given for $\varphi ^4$-kink theory.
@article{TMF_1993_94_1_a3,
     author = {K. A. Sveshnikov},
     title = {Nonclassical analogs of solitons in quantum field theory},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {52--65},
     year = {1993},
     volume = {94},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1993_94_1_a3/}
}
TY  - JOUR
AU  - K. A. Sveshnikov
TI  - Nonclassical analogs of solitons in quantum field theory
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1993
SP  - 52
EP  - 65
VL  - 94
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1993_94_1_a3/
LA  - ru
ID  - TMF_1993_94_1_a3
ER  - 
%0 Journal Article
%A K. A. Sveshnikov
%T Nonclassical analogs of solitons in quantum field theory
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1993
%P 52-65
%V 94
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1993_94_1_a3/
%G ru
%F TMF_1993_94_1_a3
K. A. Sveshnikov. Nonclassical analogs of solitons in quantum field theory. Teoretičeskaâ i matematičeskaâ fizika, Tome 94 (1993) no. 1, pp. 52-65. http://geodesic.mathdoc.fr/item/TMF_1993_94_1_a3/

[1] Bogolyubov N. N., UMZh, 2 (1950), 3–20 | MR

[2] Solodovnikova E. P., Tavkhelidze A. N., Khrustalev O. A., TMF, 10:2 (1972), 162–181 ; 11:3, 317–330 ; 12:2, 164–178 ; Разумов А. В., Хрусталев О. А., ТМФ, 29:3 (1976), 300–308 ; Khrustalev O. A., Razumov A. V., Taranov A. Yu., Nucl. Phys., В 172 (1980), 44–58 | MR | DOI | MR

[3] Gervais J.-L., Jevicki A., Sakita B., Phys. Rev., D 12 (1975), 1038–1051; Christ N.-H., Let T. D., Phys. Rev., D12 (1975), 1606–1627 ; Tomboulis E., Phys. Rev., D 12 (1975), 1678–1683; Hosoya A., Kikkawa T., Nucl. Phys., B 101 (1975), 271–885 ; Tomboulis E., Woo T. T., Ann. of Phys. (N. Y.), 98 (1976), 1–13 | MR | DOI | DOI

[4] Rajaraman R., Solitons and Instantons, North-Holland, Amsterdam, 1982 | MR | Zbl

[5] Sveshnikov K. A., Phys. Lett., A 136 (1989), 1–5 ; Свешников K. A., ТМФ, 82:1 (1990), 55–65 | DOI | MR | MR

[6] Kadyshevskii V. G., Mir-Kasimov P. M., Skachkov N. V., EChAYa, 2 (1972), 637–684

[7] Steinmann O., “Semiclassical fields in soliton sectors”, Nucl. Phys., B 131:1 (1977), 459–476 ; “Quantum fields in two-soliton sectors”, B 145:4–5 (1978), 141–159 | DOI | MR | DOI | MR

[8] Matsumoto H., Papastamatiou N. J., Umezawa H., Umezawa M., Phys. Rev., D 23 (1981), 1339–1350; Matsumoto H., Papastamatiou N. J., Semenoff G., Umezawa H., Phys. Rev., D 24 (1981), 406–425; Semenoff G., Matsumoto H., Umezawa H., J. Math. Phys., 22 (1981), 2208–2223 ; Progr. Theor. Phys., 67 (1982), 1619–1636 | DOI | MR | DOI | MR

[9] Sveshnikov K. A., TMF, 55:3 (1983), 361–384 ; 74:3 (1988), 373–391 | MR | MR

[10] Newton T. D., Wigner E. P., Rev. Mod. Phys., 21 (1949), 400–424 | DOI

[11] Oberlechner G., Umezawa M., Zenses Ch., Lett. Nuovo Cim., 23 (1978), 641–649 ; Matsumoto H., Sodano P., Umezawa H., Phys. Rev., D 19 (1979), 511–516; Semenoff G., Matsumoto H., Umezawa H., J. Math. Phys., 21 (1980), 1761–1769 | DOI | MR | DOI

[12] Sveshnikov K. A., Submitted to Int. Journ. Mod. Phys

[13] Daschen R., Hasslacher B., Neveu A., Phys. Rev., D 10 (1974), 4130–4161