Invariant subspaces and generalization of Nagaoka's theorem for the Hubbard model $(U=\infty)$
Teoretičeskaâ i matematičeskaâ fizika, Tome 94 (1993) no. 1, pp. 160-164 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The hubbard model $(U=\infty)$ on an arbitrary graph of sites in the presence of one hole in the system is considered. A sufficient condition for the absence of invariant subspaces of the space of states with fixed value of the $z$ projection of the total spin that differ in the sets of possible spin configurations is found. A generalization of Nagaoka's results for bilobate graphs is given.
@article{TMF_1993_94_1_a12,
     author = {A. V. Vedyaev and A. V. Volkov},
     title = {Invariant subspaces and generalization of {Nagaoka's} theorem for the {Hubbard} model $(U=\infty)$},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {160--164},
     year = {1993},
     volume = {94},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1993_94_1_a12/}
}
TY  - JOUR
AU  - A. V. Vedyaev
AU  - A. V. Volkov
TI  - Invariant subspaces and generalization of Nagaoka's theorem for the Hubbard model $(U=\infty)$
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1993
SP  - 160
EP  - 164
VL  - 94
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1993_94_1_a12/
LA  - ru
ID  - TMF_1993_94_1_a12
ER  - 
%0 Journal Article
%A A. V. Vedyaev
%A A. V. Volkov
%T Invariant subspaces and generalization of Nagaoka's theorem for the Hubbard model $(U=\infty)$
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1993
%P 160-164
%V 94
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1993_94_1_a12/
%G ru
%F TMF_1993_94_1_a12
A. V. Vedyaev; A. V. Volkov. Invariant subspaces and generalization of Nagaoka's theorem for the Hubbard model $(U=\infty)$. Teoretičeskaâ i matematičeskaâ fizika, Tome 94 (1993) no. 1, pp. 160-164. http://geodesic.mathdoc.fr/item/TMF_1993_94_1_a12/

[1] Vedyaev A. V., Kotelnikova O. A, Nikolaev M. Yu., Stefanovich A. V., Fazovye periody i elektronnaya struktura splavov, MGU, M., 1986

[2] Nagaoka Y., Phys. Rev., 147:1 (1966), 392–405 | DOI

[3] Tasaki H., Phys. Rev.(B), 40:13 (1989), 9192–9193 | DOI

[4] Khorn P., Dzhonson Ch., Matrichnyi analiz, Mir, M., 1989 | MR

[5] Emelichev V. A., Melnikov O. I., Sarvanov V. I., Tyshkevich R. I., Lektsii po teorii grafov, Nauka, M., 1990 | MR | Zbl