Invariant subspaces and generalization of Nagaoka's theorem for the Hubbard model $(U=\infty)$
Teoretičeskaâ i matematičeskaâ fizika, Tome 94 (1993) no. 1, pp. 160-164
Voir la notice de l'article provenant de la source Math-Net.Ru
The hubbard model $(U=\infty)$ on an arbitrary graph of sites in the presence of one hole in the system is considered. A sufficient condition for the absence of invariant subspaces of the space of states with fixed value of the $z$ projection of the total spin that differ in the sets of possible spin configurations is found. A generalization of Nagaoka's results for bilobate graphs is given.
@article{TMF_1993_94_1_a12,
author = {A. V. Vedyaev and A. V. Volkov},
title = {Invariant subspaces and generalization of {Nagaoka's} theorem for the {Hubbard} model $(U=\infty)$},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {160--164},
publisher = {mathdoc},
volume = {94},
number = {1},
year = {1993},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1993_94_1_a12/}
}
TY - JOUR AU - A. V. Vedyaev AU - A. V. Volkov TI - Invariant subspaces and generalization of Nagaoka's theorem for the Hubbard model $(U=\infty)$ JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1993 SP - 160 EP - 164 VL - 94 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1993_94_1_a12/ LA - ru ID - TMF_1993_94_1_a12 ER -
%0 Journal Article %A A. V. Vedyaev %A A. V. Volkov %T Invariant subspaces and generalization of Nagaoka's theorem for the Hubbard model $(U=\infty)$ %J Teoretičeskaâ i matematičeskaâ fizika %D 1993 %P 160-164 %V 94 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_1993_94_1_a12/ %G ru %F TMF_1993_94_1_a12
A. V. Vedyaev; A. V. Volkov. Invariant subspaces and generalization of Nagaoka's theorem for the Hubbard model $(U=\infty)$. Teoretičeskaâ i matematičeskaâ fizika, Tome 94 (1993) no. 1, pp. 160-164. http://geodesic.mathdoc.fr/item/TMF_1993_94_1_a12/