Effective fermion models with dynamical symmetry breaking
Teoretičeskaâ i matematičeskaâ fizika, Tome 94 (1993) no. 1, pp. 6-18 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Effective many-fermion models with finite momentum cutoff in the regime of dynamical symmetry breaking are considered as low-energy approximation to the action of quantum chromodynamics. The quasilocal interaction vertices responsible for the formation of dynamic fermion mass are classified for these models in the near-critical region of coupling constants. It is shown that in four-dimensional space not only the 4-fermion interaction but also vertices with six and eight fermion fields and any number of derivatives are also important. In the mean field approximation an equation is derived for the critical surface for the coupling constants of the effective fermion action. The role of the leading interaction vertices in forming the physical parameters that do not depend on the momentum cutoff is discussed.
@article{TMF_1993_94_1_a1,
     author = {A. A. Andrianov and V. A. Andrianov},
     title = {Effective fermion models with dynamical symmetry breaking},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {6--18},
     year = {1993},
     volume = {94},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1993_94_1_a1/}
}
TY  - JOUR
AU  - A. A. Andrianov
AU  - V. A. Andrianov
TI  - Effective fermion models with dynamical symmetry breaking
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1993
SP  - 6
EP  - 18
VL  - 94
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1993_94_1_a1/
LA  - ru
ID  - TMF_1993_94_1_a1
ER  - 
%0 Journal Article
%A A. A. Andrianov
%A V. A. Andrianov
%T Effective fermion models with dynamical symmetry breaking
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1993
%P 6-18
%V 94
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1993_94_1_a1/
%G ru
%F TMF_1993_94_1_a1
A. A. Andrianov; V. A. Andrianov. Effective fermion models with dynamical symmetry breaking. Teoretičeskaâ i matematičeskaâ fizika, Tome 94 (1993) no. 1, pp. 6-18. http://geodesic.mathdoc.fr/item/TMF_1993_94_1_a1/

[1] Nambu Y., Jona-Lasinio G., Phys. Rev., 122:1 (1961), 345–358 ; Gross D. J., Neveu A., Phys. Rev., D 10:10 (1974), 3235–3253 | DOI | MR

[2] Eguchi T., Phys. Rev., D14:8 (1976), 2755–2767 ; Volkov M. K., Ann. Phys. (N. Y.), 157:1 (1984), 282–303 ; Hatsuda T., Kunihiro T., Phys. Lett., B145:1 (1984), 7–11 ; Dhar A., Shankar R., Wadia S. R., Phys. Rev., D31:10 (1985), 3256–3272 ; Karchev N., Slavnov A. A., Sov. J. Theor. Math. Phys., 65 (1985), 192–208 ; Ebert D., Reinhard H., Nucl. Phys., B271:1 (1986), 188–207 ; Bernard V., Jaffe R. L., Meissner U.-G., Nucl. Phys., B308:3 (1988), 753–770 ; Wakamatsu M., Weise W., Z. Phys.–Hadrons and Nuclei, A331:1 (1988), 173–181 ; Cahill R. T., Praschifka J., Roberts C. D., Int. J. Mod. Phys., A4:3 (1989), 719–735 ; 7, 1681–1733; 18, 4929–4959; Schaden M., Reinhard H., Amundsen P. A., Lavelle M. J., Nucl. Phys., B339:2 (1990), 595–617 ; Ball R. D., Int. J. Mod. Phys., A5:16 (1990), 4391–4413 | MR | DOI | DOI | MR | DOI | DOI | MR | DOI | MR | DOI | DOI

[3] Green M. S., J. Chem. Phys., 20:8 (1952), 1281–1295 ; 22:3 (1954), 398–413 ; Kadanoff L. P., Physics, 2:6 (1966), 263–272; Wilson K., Kogit J., Phys. Rep., 12 C (1974), 75–214 ; Боголюбов Н. Н., Избранные труды, т. 2, Наукова думка, Киев, 1970 ; Попов В. Н., Континуальные интегралы к квантовой теории поля и статистической физике, Атомиздат, Москва, 1976 | DOI | MR | DOI | MR | DOI | MR | Zbl | MR

[4] Polchinski J., Nucl. Phys., B231:2 (1984), 269–295 | DOI | MR

[5] Suzuki M., Mod. Phys. Lett., A5:10 (1990), 1205–1211 ; Hasenfratz A., Hasenfratz P., Jansen K., Kuti J., Shen Y., Nucl. Phys., B365:1 (1991), 79–96 | DOI | DOI

[6] Zinn-Justin J., Nucl. Phys., B367:1 (1991), 105–122 | DOI | MR

[7] Andrianov A. A., Andrianov V. A., preprint SI-92-04, 1992

[8] Veltman M., Acta Phys. Polon., B8:3 (1977), 475–489

[9] Andrianov A. A., Andrianov V. A., TMF, 93:1 (1992), 67–82 | MR

[10] Andrianov A. A., Bonora, Nucl. Phys., B233 (1984), 232–261 | DOI

[11] Andrianov A. A., Andrianov V. A., Zap. nauchn. semin. LOMI, 189:10 (1991), 3–9 ; 199:11 (1992), 3–24 | MR | MR | Zbl

[12] Espriu D., De Rafael E., Taron J., Nucl. Phys., B345:1 (1990), 22–45 | DOI

[13] Kondo K.-I., Shuto S., Yamawaki K., Mod. Phys. Lett., A6:22 (1991), 3385–3391 | DOI | MR

[14] Bernard V., Jaffe R. L., Meissner U.-G., Nucl. Phys., 308:3 (1988), 753–770 | DOI

[15] Miransky V. A., Tanabashi M., Yamawaki K., Mod. Phys. Lett., A4:8 (1989), 1043–1947 ; Phys. Lett., B221:1 (1989), 177–182 ; Marciano W. J., Phys. Rev. Lett., 62:22 (1989), 2793–2796 ; Phys. Rev., D41:1 (1990), 219–227 ; Bardeen W. A., Hill C. T., Lindner M., Phys. Rev., D41:7 (1990), 1647–1656 | DOI | DOI | MR | DOI

[16] Rosenstein B., Warr B. J., Park S. H., Phys. Rev. Lett., 62:12 (1989), 1433–1437 ; Phys. Rep., 205:1 (1991), 59–147 | DOI | MR | DOI | MR