Nonlocalizability and asymptotical commutativity
Teoretičeskaâ i matematičeskaâ fizika, Tome 93 (1992) no. 3, pp. 514-528 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The mathematical formalism commonly used in treating nonlocal highly singular interactions is revised. The notion of a support cone is introduced, which replaces that of support for nonlocalizable distributions. Such support cones are proven to exist for distributions defined on the Gelfand–Shilov spaces$S^\beta $, where $0<\beta <1$.This result leads to a refinement of previous generalizations of the local commutativity condition to nonlocal quantum fields. For string propagators, a new derivation of a representation similar to that of Källen–Lehmann is proposed. It is applicable to any initial and final string configurations and manifests exponential growth of spectral densities intrinsic in nonlocalizable theories.
@article{TMF_1992_93_3_a8,
     author = {V. Ya. Fainberg and M. A. Soloviev},
     title = {Nonlocalizability and asymptotical commutativity},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {514--528},
     year = {1992},
     volume = {93},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TMF_1992_93_3_a8/}
}
TY  - JOUR
AU  - V. Ya. Fainberg
AU  - M. A. Soloviev
TI  - Nonlocalizability and asymptotical commutativity
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1992
SP  - 514
EP  - 528
VL  - 93
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1992_93_3_a8/
LA  - en
ID  - TMF_1992_93_3_a8
ER  - 
%0 Journal Article
%A V. Ya. Fainberg
%A M. A. Soloviev
%T Nonlocalizability and asymptotical commutativity
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1992
%P 514-528
%V 93
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1992_93_3_a8/
%G en
%F TMF_1992_93_3_a8
V. Ya. Fainberg; M. A. Soloviev. Nonlocalizability and asymptotical commutativity. Teoretičeskaâ i matematičeskaâ fizika, Tome 93 (1992) no. 3, pp. 514-528. http://geodesic.mathdoc.fr/item/TMF_1992_93_3_a8/

[1] Gross D. J., Mende P. F., Nucl. Phys. B, 303 (1988), 407 | DOI | MR

[2] Atick J. J., Witten E., Nucl. Phys. B, 310 (1988), 291 | DOI | MR

[3] Amati D., Ciafaloni M., Veneziano G., Phys. Lett. B, 216 (1989), 41 | DOI | MR

[4] Fainberg V. Ya., Marshakov A. V., Phys. Lett. B, 211 (1988), 82 ; Proc. Lebedev Phys. Inst., 201, 1990, 139 | DOI | MR | MR

[5] Marshakov A. V., Nucl. Phys. B, 312 (1989), 178 | DOI | MR

[6] Meiman N. N., Sov. Phys. JETP, 20 (1965), 1320 | MR

[7] Bümmerstede J., Lücke W., Commun. Math. Phys., 37 (1974), 121 | DOI | MR

[8] Iofa M. Z., Fainberg V. Ya., Nuovo Cim. A, 5 (1971), 273 | DOI

[9] Fainberg V. Ya., Soloviev M. A., Ann. Phys., 113 (1978), 421 | DOI | MR | Zbl

[10] Iofa M. Z., Fainberg V. Ya., Sov. Phys. JETP, 29 (1969), 880 | MR

[11] Iofa M. Z., Fainberg V. Ya., Theor. Math. Phys., 11 (1969), 143 | DOI | MR

[12] Fainberg V. Ya., Problems of Theoretical Physics, Nauka, Moscow, 1972 (Russian) | MR

[13] Lücke W., Acta Phys. Austriaca, 55 (1984), 213 | MR

[14] Lücke W., J. Math. Phys., 27 (1986), 1901 | DOI | MR

[15] Soloviev M. A., Sov. Phys.–Lebedev Inst. Rep., 4, 1990, 45

[16] Efimov G. V., Non-Local Interactions of Quantum Fields, Nauka, Moscow, 1977 (Russian) | MR

[17] Efimov G. V., Problems in Quantum Theory of Non-Local Interactions, Nauka, Moscow, 1985 (Russian) | MR | Zbl

[18] Efimov G. V., Quantum Field Theory and Quantum Statistics. Essays in Honour of the 60-th Birthday of E. S. Fradkin, v. 1, Adam Hilger, Bristol, 1987, 545 | MR

[19] Soloviev M. A., Developments in Modern Mathematics, Chapman and Hall, London, 1992, to appear

[20] Streater R. F., Wightman A. S., PCT, Spin and Statistics and All That, W. A. Benjamin Inc., New York–Amsterdam, 1964 | MR | Zbl

[21] Jaffe A., Phys. Rev., 158 (1967), 1454 | DOI

[22] Gelfand I. M., Shilov G. E., Generalized Functions, v. 2, Academic Press, New York, 1968 | MR | Zbl

[23] Kawai T., J. Faculty of Sci. Univ. of Tokyo A, 1 (1970), 465

[24] Soloviev M. A., Convolution with Distributions Carried by Cones, preprint ITEP-140, 1977 (Russian) | Zbl

[25] Lücke W., Commun. Math. Phys., 65 (1979), 77 | DOI | MR | Zbl

[26] Soloviev M. A., Theor. Math. Phys., 7 (1971), 183

[27] Constantinescu F., Taylor J. G., J. Math. Phys., 15 (1974), 824 | DOI | MR

[28] Bümmerstede J., Lücke W., J. Math. Phys., 16 (1975), 1203 | DOI | MR

[29] Hörmander L., The Analysis of Linear Partial Differential Operators, v. 1, Springer-Verlag, Berlin, 1983 | MR

[30] Soloviev M. A., Theor. Math. Phys., 15 (1973), 317 | DOI

[31] Fubini S., Veneziano G., Nuovo Cim. A, 64 (1969), 811 | DOI

[32] Bordakci K., Mandelstam S., Phys. Rev., 184 (1969), 1640 | DOI

[33] Cohen A., Moore G., Nelson P., Polchinski J., Nucl. Phys. B, 267 (1986), 143 | DOI | MR

[34] Green M. B., Schwartz J. H., Witten E., Superstring Theory, v. 1, Cambridge Univ. Press, Cambridge, 1987 | MR | Zbl

[35] Polchinski J., Commun. Math. Phys., 104 (1986), 37 | DOI | MR | Zbl

[36] Soloviev M. A., Proc. Lebedev Phys. Inst., 209, 1992, 121 (Russian)