Nonlocalizability and asymptotical commutativity
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 93 (1992) no. 3, pp. 514-528
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The mathematical formalism commonly used in treating nonlocal highly singular interactions is revised. The notion of a support cone is introduced, which replaces that of support for nonlocalizable distributions. Such support cones are proven to exist for distributions defined on the Gelfand–Shilov spaces$S^\beta $, where $0\beta 1$.This result leads to a refinement of previous generalizations of the local commutativity condition to nonlocal quantum fields. For string propagators, a new derivation of a representation similar to that of Källen–Lehmann is proposed. It is applicable to any initial and final string configurations and manifests exponential growth of spectral densities intrinsic in nonlocalizable theories.
			
            
            
            
          
        
      @article{TMF_1992_93_3_a8,
     author = {V. Ya. Fainberg and M. A. Soloviev},
     title = {Nonlocalizability and asymptotical commutativity},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {514--528},
     publisher = {mathdoc},
     volume = {93},
     number = {3},
     year = {1992},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TMF_1992_93_3_a8/}
}
                      
                      
                    V. Ya. Fainberg; M. A. Soloviev. Nonlocalizability and asymptotical commutativity. Teoretičeskaâ i matematičeskaâ fizika, Tome 93 (1992) no. 3, pp. 514-528. http://geodesic.mathdoc.fr/item/TMF_1992_93_3_a8/
