Nonlocalizability and asymptotical commutativity
Teoretičeskaâ i matematičeskaâ fizika, Tome 93 (1992) no. 3, pp. 514-528

Voir la notice de l'article provenant de la source Math-Net.Ru

The mathematical formalism commonly used in treating nonlocal highly singular interactions is revised. The notion of a support cone is introduced, which replaces that of support for nonlocalizable distributions. Such support cones are proven to exist for distributions defined on the Gelfand–Shilov spaces$S^\beta $, where $0\beta 1$.This result leads to a refinement of previous generalizations of the local commutativity condition to nonlocal quantum fields. For string propagators, a new derivation of a representation similar to that of Källen–Lehmann is proposed. It is applicable to any initial and final string configurations and manifests exponential growth of spectral densities intrinsic in nonlocalizable theories.
@article{TMF_1992_93_3_a8,
     author = {V. Ya. Fainberg and M. A. Soloviev},
     title = {Nonlocalizability and asymptotical commutativity},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {514--528},
     publisher = {mathdoc},
     volume = {93},
     number = {3},
     year = {1992},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TMF_1992_93_3_a8/}
}
TY  - JOUR
AU  - V. Ya. Fainberg
AU  - M. A. Soloviev
TI  - Nonlocalizability and asymptotical commutativity
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1992
SP  - 514
EP  - 528
VL  - 93
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1992_93_3_a8/
LA  - en
ID  - TMF_1992_93_3_a8
ER  - 
%0 Journal Article
%A V. Ya. Fainberg
%A M. A. Soloviev
%T Nonlocalizability and asymptotical commutativity
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1992
%P 514-528
%V 93
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1992_93_3_a8/
%G en
%F TMF_1992_93_3_a8
V. Ya. Fainberg; M. A. Soloviev. Nonlocalizability and asymptotical commutativity. Teoretičeskaâ i matematičeskaâ fizika, Tome 93 (1992) no. 3, pp. 514-528. http://geodesic.mathdoc.fr/item/TMF_1992_93_3_a8/