Loop approaches to gauge field theories
Teoretičeskaâ i matematičeskaâ fizika, Tome 93 (1992) no. 3, pp. 481-505 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Basic mathematical and physical concepts in loop- and path-dependent formulations of Yang–Mills theory are reviewed and set into correspondence. We point out some problems peculiar to these non-local approaches, in particular those associated with defining structure on various kinds of loop spaces. The issues of classical loop equations, differential operators, lattice gauge theory, loop algebras, and canonical quantization are discussed in some detail, and the paper concludeswith an extensive list of references.
@article{TMF_1992_93_3_a6,
     author = {P. Loll},
     title = {Loop approaches to gauge field theories},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {481--505},
     year = {1992},
     volume = {93},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TMF_1992_93_3_a6/}
}
TY  - JOUR
AU  - P. Loll
TI  - Loop approaches to gauge field theories
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1992
SP  - 481
EP  - 505
VL  - 93
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1992_93_3_a6/
LA  - en
ID  - TMF_1992_93_3_a6
ER  - 
%0 Journal Article
%A P. Loll
%T Loop approaches to gauge field theories
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1992
%P 481-505
%V 93
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1992_93_3_a6/
%G en
%F TMF_1992_93_3_a6
P. Loll. Loop approaches to gauge field theories. Teoretičeskaâ i matematičeskaâ fizika, Tome 93 (1992) no. 3, pp. 481-505. http://geodesic.mathdoc.fr/item/TMF_1992_93_3_a6/

[1] Gu C.-H., “On classical Yang-Mills fields”, Phys. Rep., 80 (1981), 251–337 | DOI | MR

[2] Migdal A. A., “Loop equations and $1/N$ expansion”, Phys. Rep., 102 (1983), 199–290 | DOI

[3] Kogut J., Susskind L., “Hamiltonian formulation of Wilson's lattice gauge theories”, Phys. Rev. D, 11 (1975), 395–408 | DOI

[4] Fort H., Gambini R., “Lattice QED with lignt fermions in $P$ representation”, Phys. Rev. D, 44 (1991), 1257–1262 | DOI | MR

[5] Yang C. N., “Integral formalism for gauge fields”, Phys. Rev. Lett., 33 (1974), 445–447 | DOI | MR | Zbl

[6] Kobayashi S., Nomizu K., Foundations of differential geometry, v. 1, Interscience, New York, 1969 | MR | Zbl

[7] Lichnerowicz A., Global theory of connections and holonomy groups, Noordhoff International Publishing, 1976 | MR | Zbl

[8] Choquet-Bruhat Y., DeWitt-Morette C., Dillard-Bleick M., Analysis, manifolds and physics, revised edition, North-Holland, Amsterdam, 1982 | MR | Zbl

[9] Wilson K., “Confinement of quarks”, Phys. Rev. D, 10 (1974), 2445–2459 | DOI

[10] Kauffman L. H., On knots, Princeton University Press, 1987 | MR | Zbl

[11] Kauffman L. H., Knots and Physics, World Scientific, Singapore, 1991 | MR

[12] Gambini R., Trias A., “Chiral formulation of Yang–Mills equations: A geometric approach”, Phys. Rev. D, 27 (1983), 2935–2939 | DOI | MR

[13] Adams J. F., Infinite loop spaces, Princeton University Press, 1978 | MR | Zbl

[14] Michor P. W., Manifolds of differentiable mappings, Shiva Publishing Limited, Orpington, 1980 | MR | Zbl

[15] Lipschutz S., General topology, McGraw-Hill, New York, 1965

[16] Ashtekar A., Isham C. J., Representations of the holonomy algebras of gravity and non-Abelian gauge theories, preprint Imperial/TP/91-92/14 and SU-GP-91-12-2, 1991 | MR

[17] Isham C. J., “Loop algebras and canonical quantum gravity”, Proceedings of the 1991 AMS Summer Research Conference on Mathematical Methods in Classical Field Theory, to appear | MR

[18] Mensky M. B., “Group of parallel transports and description of particles in curved spacetime”, Lett. Math. Phys., 2 (1978), 175–180 | DOI | MR

[19] Mensky M. B., “Application of the group of paths to the gauge theory and quarks”, Lett. Math. Phys., 3 (1979), 513–520 | DOI | MR

[20] Mensky M. B., The group of paths, Nauka, Moscow, 1983 (Russian) | MR

[21] Stasheff J., Differential graded Lie algebras, Quasi-Hopf algebras and higher homotopy algebras, preprint UNC-MATH-91-3 | MR

[22] Brylinski J. M., The Kaehler geometry of the space of knots in a smooth threefold, Penn State pure mathematics report No PM93, 1990

[23] Schäper U., Geometry of loop spaces. I. A Kaluza–Klein type point of view, preprint Freiburg THEP 91/3, march 1991

[24] Gambini R., Trias A., “Geometrical origin of gauge theories”, Phys. Rev. D, 23 (1981), 553–555 | DOI | MR

[25] Jackiw R., “Gauge-covariant conformal transformations”, Phys. Rev. Lett., 41 (1978), 1635–1638 | DOI

[26] Durhuus B., Leinaas J. M., “On the loop space formulation of gauge theories”, Physica Scripta, 25 (1982), 504–510 | DOI | MR | Zbl

[27] Gliozzi F., Virasoro M. A., “The interaction among dual strings as a manifestation of the gauge group”, Nucl. Phys. B, 164 (1980), 141–151 | DOI | MR

[28] Gambini R., Trias A., “Gauge dynamics in the $C$-representation”, Nucl. Phys. B, 278 (1986), 436–448 | DOI | MR

[29] Giles R., “Reconstruction of gauge potentials from Wilson loops”, Phys. Rev. D, 24 (1981), 2160–2168 | DOI | MR

[30] Goldberg J. N., Lewandowski J., Stomaiolo C., “Degeneracy in loop variables”, Comm. Math. Phys., to appear | MR

[31] Polyakov A. M., Gauge fields and strings, Harwood Academic Publishers, Chur, 1987 | MR

[32] Polyakov A. M., “Gauge fields as rings of glue”, Nucl. Phys. B, 164 (1979), 171–188 | DOI | MR

[33] Mandelstam S., “Quantum electrodynamics without potentials”, Ann. Phys., 19 (1962), 1–24 | DOI | MR | Zbl

[34] Bialnycki-Birula I., “Gauge-invariant variables in the Yang–Mills theory”, Bull. Acad. Polon. Sci., 11 (1963), 135–138 | MR

[35] Mandelstam S., “Feynman rules for electromagnetic and Yang–Mills fields from the gauge-independent field-theoretic formalism”, Phys. Rev., 175 (1968), 1580–1603 | DOI

[36] Polyakov A. M., “String representations and hidden symmetries for gauge fields”, Phys. Lett. B, 82 (1979), 247–250 | DOI | MR

[37] Aref'eva I. Ya., “The gauge field as chiral field on the path and its integrability”, Lett. Math. Phys., 3 (1979), 241–247 | DOI | MR

[38] Aref'eva I. Ya., “Quantum contour field equations”, Phys. Lett. B, 93 (1980), 347–353 | DOI | MR

[39] Aref'eva I. Ya., The integral formulation of gauge theories - strings, bags or something else, lectures given at the 17-th Karpacz Winter School, 1980

[40] Gu C.-H., Wang L.-L.Ch., “Loop-space formulation of gauge theories”, Phys. Rev. Lett., 25 (1980), 2004–2007

[41] Mandelstam S., “Charge-monopole duality and the phases of non-Abelian gauge theories”, Phys. Rev. D, 19 (1979), 2391–2409 | DOI

[42] Blencowe M. P., “The Hamiltonian constraint in quantum gravity”, Nucl. Phys. B, 341 (1990), 213–251 | DOI | MR | Zbl

[43] Brügmann B., Pullin J., On the constraint of quantum gravity in the loop representation, preprint Syracuse SU-GP-91/8-5 | MR

[44] Durhuus B., Olesen P., “Eigenvalues of the Wilson operator in multicolor QCD”, Nucl. Phys. B, 184 (1981), 406–428 | DOI

[45] Furmanski W., Kolawa A., “Yang–Mills vacuum: An attempt at lattice loop calculus”, Nucl. Phys. B, 291 (1987), 594–628 | DOI | MR

[46] Gambini R., Leal L., Trias A., “Loop calculus for lattice gauge theories”, Phys. Rev. D, 39 (1989), 3127–3135 | DOI | MR

[47] Rovelli C., Smolin L., Loop representation for lattice gauge theory, preprint Pittsburgh and Syracuse, 1990 | MR

[48] Brügmann B., “The method of loops applied to lattice gauge theory”, Phys. Rev. D, 43 (1991), 566–579 | DOI | MR

[49] Loll R., “Independent $SU(2)$-loop variables and the reduced configuration space of $SU(2)$-lattice gauge theory”, Nucl. Phys. B, 368 (1992), 121–142 | DOI | MR

[50] Loll R., Yang–Mills theory without Mandelstam constraints, Syracuse preprint SUGP-92 | MR

[51] Rovelli C., Smolin L., “Loop space representation of quantum general relativity”, Nucl. Phys. B, 331 (1990), 80–152 | DOI | MR

[52] Rovelli C., “Ashtekar formulation of general relativity and loop-space non-perturbative quantum gravity: A report”, Class. Quantum Grav., 1991, 1613–1675 | DOI | MR | Zbl

[53] Loll R., “A new quantum representation for canonical gravity and $SU(2)$ Yang–Mills theory”, Nucl. Phys. B, 350 (1991), 831–860 | DOI | MR

[54] 't Hooft G., “On the phase transition towards permanent quark confinement”, Nucl. Phys. B, 138 (1978), 1–25 | DOI | MR

[55] 't Hooft G., “A property of electric and magnetic flux in non-Abelian gauge theories”, Nucl. Phys. B, 153 (1979), 141–160 | DOI | MR

[56] Gambini R., Trias A., “On confinement in pure Yang–Mills theory”, Phys. Lett. B, 141 (1984), 403–406 | DOI | MR

[57] Hosoya A., “Duality for the Lorentz force in loop space”, Phys. Lett. B, 92 (1980), 331–332 | DOI | MR

[58] Hosoya A., Shigemoto K., “Dual potential and magnetic loop operator”, Prog. Theor. Phys., 65 (1981), 2008–2022 | DOI

[59] Aldaya V., Navarro-Salas J., “New solutions of the Hamiltonian and diffeomorphism constraints of quantum gravity from a highest weight loop representation”, Phys. Lett. B, 259 (1991), 249–255 | DOI | MR

[60] Rayner D., “Hermitian operators on quantum general relativity loop space”, Class. Quant. Grav., 7 (1990), 651–661 | DOI | MR | Zbl

[61] Ashtekar A., Isham C. J., “Inequivalent observable algebras: another ambiguity in field quantisation”, Phys. Lett. B, 274 (1992), 393–398 | DOI | MR