On non-isospectral flows, Painlevé equations, and symmetries of differential and difference equations
Teoretičeskaâ i matematičeskaâ fizika, Tome 93 (1992) no. 3, pp. 473-480 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We identify the Painlevé Lax pairs with those corresponding to stationary solutions of non-isospectral flows, both for partial differential equations and differential-difference equations. We discuss symmetry reductions of integrable differential-difference equations and show that, in contrast with the continuous case, where Painlevé equations naturally arise, in the discrete case the so-called “discrete Painlevé equations” cannot be obtained in this way. Actually, symmetry reductions of integrable differential-difference equations naturally provide “delay Painlevé equations”.
@article{TMF_1992_93_3_a5,
     author = {D. Levi and O. Ragnisco and M. A. Rodriguez},
     title = {On non-isospectral flows, {Painlev\'e} equations, and symmetries of differential and difference equations},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {473--480},
     year = {1992},
     volume = {93},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TMF_1992_93_3_a5/}
}
TY  - JOUR
AU  - D. Levi
AU  - O. Ragnisco
AU  - M. A. Rodriguez
TI  - On non-isospectral flows, Painlevé equations, and symmetries of differential and difference equations
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1992
SP  - 473
EP  - 480
VL  - 93
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1992_93_3_a5/
LA  - en
ID  - TMF_1992_93_3_a5
ER  - 
%0 Journal Article
%A D. Levi
%A O. Ragnisco
%A M. A. Rodriguez
%T On non-isospectral flows, Painlevé equations, and symmetries of differential and difference equations
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1992
%P 473-480
%V 93
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1992_93_3_a5/
%G en
%F TMF_1992_93_3_a5
D. Levi; O. Ragnisco; M. A. Rodriguez. On non-isospectral flows, Painlevé equations, and symmetries of differential and difference equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 93 (1992) no. 3, pp. 473-480. http://geodesic.mathdoc.fr/item/TMF_1992_93_3_a5/

[1] Painlevé P., Acta Math., 25 (1902), 1–85 | DOI | MR

[2] Gambier G., Acta Math., 33 (1909), 1–55 | DOI | MR | Zbl

[3] Ablowitz M. J., Ramani A., Segur H., Lett. Nuovo Cimento, 23 (1978), 333–338 | DOI | MR

[4] Flaschka H., Newell A. C., Comm. Math. Phys., 76 (1980), 65 | DOI | MR | Zbl

[5] Jimbo M., Miwa T., Ueno K., Physica D, 2 (1981), 306 | DOI | MR | Zbl

[6] Its A. R., Novokshenov V. Yu., The isomonodromic deformation method in the theory of Painlevé equations, Lect. Notes in Math., 1191, Springer-Verlag, 1986 | DOI | MR | Zbl

[7] Fokas A. S., Zhou X., On the solvability of Painlevé II and IV, Preprint Claikson University, INS-148, january 1990 | MR

[8] Fokas A. S., Its A. R., Zhou X., Painlevé transcendents (Sainte-Adèle, PQ, 1990), NATO Adv. Sci. Inst. Ser., 278, Plenum, New York, 1992, 33–47 | MR | Zbl

[9] Papageorgiou V. G., Nijhoff F., Phys. Lett. A, 53 (1991), 337 | MR

[10] Papageorgiou V. G., Grammaticos B., Nijhoff F., Ramani A., Isomonodromic Deformation Problems for Discrete Analogues of Painlevé equations, preprint INS-178/91 | MR

[11] Fuchssteiner B., Progr. Theor. Phys., 70 (1983), 1508–1522 ; Oevel W., Mastersymmetries: weak action-angle structure for hamiltonian and non-hamiltonian dynamical systems, preprint, Paderborn, 1986 | DOI | MR | Zbl | MR | Zbl

[12] Levi D., Ragnisco O., Lett. Nuovo Cimento, 22 (1978), 691 ; Bruschi M., Levi D., Ragnisco O., II Nuovo Cimento A, 48 (1978), 213–226 ; Levi D., Ragnisco O., J. Phys. A; Math. Gen., 7 (1979), L157–L162 | DOI | MR | DOI | MR | DOI | MR