A~simple example of modular forms as tau-functions for integrable equations
Teoretičeskaâ i matematičeskaâ fizika, Tome 93 (1992) no. 2, pp. 330-341
Voir la notice de l'article provenant de la source Math-Net.Ru
We show how classical modular forms and functions appear as tau-functions for a certain integrable reduction of the self-dual Yang–Mills equations obtained by S. Chakravarty, M. Ablowitz, and P. Clarkson [6]. We discuss possible consequences of this novel phenomenon in integrable systems which indicate deep connections between integrable equations, group representations, modular forms, and moduli spaces.
@article{TMF_1992_93_2_a9,
author = {L. A. Takhtadzhyan},
title = {A~simple example of modular forms as tau-functions for integrable equations},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {330--341},
publisher = {mathdoc},
volume = {93},
number = {2},
year = {1992},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1992_93_2_a9/}
}
TY - JOUR AU - L. A. Takhtadzhyan TI - A~simple example of modular forms as tau-functions for integrable equations JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1992 SP - 330 EP - 341 VL - 93 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1992_93_2_a9/ LA - ru ID - TMF_1992_93_2_a9 ER -
L. A. Takhtadzhyan. A~simple example of modular forms as tau-functions for integrable equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 93 (1992) no. 2, pp. 330-341. http://geodesic.mathdoc.fr/item/TMF_1992_93_2_a9/