A simple example of modular forms as tau-functions for integrable equations
Teoretičeskaâ i matematičeskaâ fizika, Tome 93 (1992) no. 2, pp. 330-341 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We show how classical modular forms and functions appear as tau-functions for a certain integrable reduction of the self-dual Yang–Mills equations obtained by S. Chakravarty, M. Ablowitz, and P. Clarkson [6]. We discuss possible consequences of this novel phenomenon in integrable systems which indicate deep connections between integrable equations, group representations, modular forms, and moduli spaces.
@article{TMF_1992_93_2_a9,
     author = {L. A. Takhtadzhyan},
     title = {A~simple example of modular forms as tau-functions for integrable equations},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {330--341},
     year = {1992},
     volume = {93},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1992_93_2_a9/}
}
TY  - JOUR
AU  - L. A. Takhtadzhyan
TI  - A simple example of modular forms as tau-functions for integrable equations
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1992
SP  - 330
EP  - 341
VL  - 93
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1992_93_2_a9/
LA  - ru
ID  - TMF_1992_93_2_a9
ER  - 
%0 Journal Article
%A L. A. Takhtadzhyan
%T A simple example of modular forms as tau-functions for integrable equations
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1992
%P 330-341
%V 93
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1992_93_2_a9/
%G ru
%F TMF_1992_93_2_a9
L. A. Takhtadzhyan. A simple example of modular forms as tau-functions for integrable equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 93 (1992) no. 2, pp. 330-341. http://geodesic.mathdoc.fr/item/TMF_1992_93_2_a9/

[1] Atiyah M. F., Classical Geometry of Yang-Mills Fields. Fermi Lectures, Scuola Normale, Pisa, 1980 | MR

[2] Ward R., “On self-dual gauge fields”, Phys. Lett A, 61 (1977), 81–82 | DOI | MR | Zbl

[3] Belavin A. A., Zakharov V. E., “Yang-Mills equations as inverse scattering problem”, Phys. Lett. B, 73 (1978), 53–57 | DOI | MR

[4] Ward R., Phil. Trans. Roy. Soc. London A, 315 (1985), 451–457 | DOI | MR | Zbl

[5] Mason J., Sparling G., Phys. Lett. A, 137 (1989), 29–33 | DOI | MR

[6] Chakravarty S., Ablowitz M. J., Clarkson P. A., “Reductions of self-dual Yang-Mills equations and classical systems”, Phys. Rev. Lett., 65 (1990), 1085–1087 | DOI | MR | Zbl

[7] Ablowitz M. J., Clarkson P. A., Solitons, nonlinear evolution equations and inverse scattering, London Mathematical Society Lecture Note Series, 149, Cambridge University Press, Cambridge, 1991 | MR | Zbl

[8] Segal G., Wilson G., “Loop groups and equations of KdV type”, Inst. Hautes Études Sci. Publ. Math., 61 (1985), 5–65 | DOI | MR | Zbl

[9] Chakravarty S., Ablowitz M. J., Takhtajan L., Self-dual Yang-Mills equation and new special functions in integrable systems, PAM preprint No 108, University of Colorado, Boulder, 1991 | MR

[10] Ablowitz M. J., Chakravarty S., L. Takhtajan, Integrable systems, self-dual Yang-Mills equations and modular forms, PAM preprint No 113, University of Colorado, Boulder, 1991 | MR | Zbl

[11] W. Nahm, “The algebraic geometry of multi-monopoles”, Group Theoretical Methods in Physics, Lect. Notes in Physics, 180, eds. M. Serdagorlu, E. Inonu, Springer-Verlag, 1982, 456–466 | DOI | MR

[12] G. W. Gibbons, C. N. Pope, “The positive action conjecture , asymptotically Euclidean metrics in quantum gravity”, Commun. Math. Phys., 66 (1979), 267–290 | DOI | MR

[13] Halphen G.-H., “Sur un systeme d'equations differentielles”, C. R. Acad. Sc. Paris, 92 (1881), 1001–1003

[14] Halphen G.-H., “Sur certains systemes d'equations differentielles”, C. R. Acad. Sc. Paris, 92 (1881), 1004–1007

[15] Adler M., van Moerbeke P., Invent. Math., 67 (1982), 297–326 | DOI | MR

[16] Chazy J., “Sur les équations différentielles dont l'intégrate générale posséde une coupure essentielle mobile”, C. R. Acad. Sc. Paris, 150 (1910), 456–458 | Zbl

[17] Chazy J., “Sur les équations différentielles du trousième et d'ordre supeérieur dont l'intégrale générale à ses points critiques fixés”, Acta Math., 34 (1911), 317–385 | DOI | MR | Zbl

[18] Bureau F. J. Sur des systèmes différentiels non linéaires du troisième ordre et les équations différentielles non linéaires associées, Acad. Roy. Belg. Bull. CI. Sc. (5), 73 (1987), 335–353 | MR | Zbl

[19] Lang S., Elliptic Functions, Addison–Wesley, 1973 | MR

[20] Koblitz N., Introduction to Elliptic Curves and Modular Forms, Springer-Verlag, 1984 | MR

[21] Ford L., Automorphic functions, Chelsea Pub. Co., 1951 | MR

[22] Rankin R. A., “The construction of automorphic forms from the derivatives of a given form”, J. Indian Math. Soc., 20 (1956), 103–116 | MR | Zbl

[23] Clarkson P. A., SERC postdoctoral fellowship report B/RF/6935, 1986

[24] Klein F., Vorlesungen über das ikosaeder und die auflösung der gleichungen vom fünften grade, Leipzig, 1884 | MR

[25] Verdier J.-L., “Algèbres de Lie, systèmes Hamiltoniens, courbes algèbriques”, Séminaire Bourbaki, v. 566, 1980–1981, 1–10 | MR

[26] Dubrovin B., Novikov S., “Hydrodynamics of weakly deformed soliton lattices, differential geometry and Hamiltonian theory”, Russian Math. Surveys, 44:6 (1989), 35–101 | DOI | MR

[27] Dubrovin B., Differential geometry of moduli spaces and its applications to soliton equations and to topological conformal field theory, preprints di Matematica No 117, Scuola Normale, Pisa, 1991 | MR