$W_\infty$ – a geometric approach
Teoretičeskaâ i matematičeskaâ fizika, Tome 93 (1992) no. 2, pp. 273-285 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A brief review is given of an adaptation of the coadjoint orbit method appropriate for the study of models with infinite-dimensional symmetry groups. It is illustrated on several examples, including derivation of the WZNW action of induced $D=2$ $(N,0)$ supergravity. As the main application, we present the geometric action on a generic coadjoint orbit of the deformed group of area-preserving diffeomorphisms. This action is precisely the anomalous effective WZNW action of $D=2$ matter fields coupled to a chiral $W_\infty$ gravity background. Similar actions are given which produce the KP hierarchy as on-shell equations of motion.
@article{TMF_1992_93_2_a6,
     author = {E. Nissimov and S. Pacheva},
     title = {$W_\infty$ {\textendash} a~geometric approach},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {273--285},
     year = {1992},
     volume = {93},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1992_93_2_a6/}
}
TY  - JOUR
AU  - E. Nissimov
AU  - S. Pacheva
TI  - $W_\infty$ – a geometric approach
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1992
SP  - 273
EP  - 285
VL  - 93
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1992_93_2_a6/
LA  - ru
ID  - TMF_1992_93_2_a6
ER  - 
%0 Journal Article
%A E. Nissimov
%A S. Pacheva
%T $W_\infty$ – a geometric approach
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1992
%P 273-285
%V 93
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1992_93_2_a6/
%G ru
%F TMF_1992_93_2_a6
E. Nissimov; S. Pacheva. $W_\infty$ – a geometric approach. Teoretičeskaâ i matematičeskaâ fizika, Tome 93 (1992) no. 2, pp. 273-285. http://geodesic.mathdoc.fr/item/TMF_1992_93_2_a6/

[1] Bogoliubov N. N., Polivanov M. C., Medvedev B. V., New Methods in the Theory of Dispersion Relations, Nauka, Moscow, 1958 | MR

[2] Faddeev L. D., Recent Advances in Field Theory and Statistical Mechanics, eds. J.-B. Zuber, R. Stora, North-Holland, 1984 ; Faddeev L., Takhtajan L., Hamiltonian Methods in the Theory of Solitons, Springer, 1987 ; Faddeev L., Reshetikhin N., Takhtajan L, “Quantization of Lie groups and Lie algebras”, Algebraic analysis, v.I, Academic Press, Boston, MA, 1988, 129–139 | MR | MR | Zbl | DOI | MR

[3] Pope C., Romans L., Shen X., Phys. Lett. B, 236 (1990), 173 | DOI | MR

[4] Pope C., Romans L., Shen X., Nucl. Phys. B, 339 (1990), 191 | DOI | MR

[5] Bakas I., Phys. Lett. B, 228 (1989), 57 ; Comm. Math. Phys., 134 (1990), 487 | DOI | MR | DOI | MR | Zbl

[6] Zamolodchikov A., Theor. Math. Phys., 65 (1985), 1205 | DOI | MR

[7] Radul A. O., Funkts. Anal. Prilozh., 25 (1991), 33 | DOI | MR | Zbl

[8] Radul A., Vaysburd I., Phys. Lett. B, 274 (1992), 317 | DOI | MR

[9] Han-Park Q., Phys. Lett. B, 236 (1990), 429 ; 238, 208; Yamagishi K., Chapline G., Class. Quant. Grav., 8 (1991), 1 | DOI | MR | DOI | MR

[10] Watanabe Y., Annali Matem. Pura Appl., 136 (1984), 77 | DOI | MR | Zbl

[11] Reiman A., Semenov-Tyan-Shansky M., J. Sov. Math., 31 (1985), 3399 ; Yamagishi K., Phys. Lett. B, 259 (1991), 436 ; Yu F., Wu Y.-S., Phys. Lett. B, 263 (1991), 220 | DOI | DOI | MR | DOI | MR

[12] Avan J., Jevicki A., Mod. Phys. Lett. A, 7 (1992), 357 | DOI | MR | Zbl

[13] Bakas I., Kiritsis E., Berkeley preprint. UCB-PTH-91/44; Ellis J., Mavromatos N., Nanopoulos D., Phys. Lett. B, 267:4 (1991), 465–474 ; Phys. Lett. B, 272:3–4 (1991), 261–271 ; Yu F., Wu Y. S., Univ. of Utah preprint UU-HEP-91/19 | DOI | MR | DOI | MR

[14] Aratyn H., Ferreira L., Gomes J., Zimerman A., Univ. Illinois preprint UICHEPTH/92-1

[15] Klebanov I., Polyakov A., Mod. Phys. Lett. A, 6 (1991), 3273 | DOI | MR | Zbl

[16] Witten E., Nucl. Phys. B, 373 (1992), 187 | DOI | MR

[17] Alekseev A., Faddeev L. D., Shatashvili S. L., J. of Geom. and Phys., 5 (1989), 391 | DOI | MR

[18] Kirillov A. A., Elements of the Theory of Representations, Springer-Verlag, 1976 ; Kostant B., Lect. Notes in Math., 170, 1970 | MR | MR | Zbl

[19] Kirillov A. A., Lect. Notes in Math., 970, 1982, 101 | DOI | MR | Zbl

[20] Aratyn H., Nissimov E., Pacheva S., Zimerman A. H., Phys. Lett B., 240 (1990), 127 | DOI | MR

[21] Aratyn H., Nissimov E., Pacheva S., Phys. Lett. B, 251 (1990), 401 | DOI | MR

[22] Dubrovin B., Fomenko A., Novikov S., Modern Geometry. Methods of Homology, Nauka, Moscow, 1984 | MR | Zbl

[23] Polyakov A., Wiegmann P., Phys. Lett. B, 131 (1983), 121 ; 141 (1984), 223 | DOI | MR | DOI | MR

[24] Polyakov A., Mod. Phys. Lett. A, 2 (1987), 893 ; Polyakov A., Zamolodchikov A., 3 (1988), 1213 | DOI | MR | DOI | MR

[25] Aratyn H., Nissimov E., Pacheva S., Phys. Lett. B, 255 (1991), 359 | DOI | MR

[26] Alekseev A., Shatashvili S. L., Nucl. Phys. B, 323 (1989), 719 | DOI | MR

[27] Polyakov A., Int. J. Mod. Phys. A, 5 (1990), 833 | DOI | MR

[28] Schoutens K., Nucl. Phys. B, 295 (1988), 634 | DOI | MR

[29] Aratyn H., Nissimov E., Pacheva S., Proc. XX-th Int. Conf. on Diff.-Geom. Methods in Theor. Phys., World Sci., 1991; Phys. Lett. B, 284:3–4 (1992), 273–282 | DOI | MR

[30] Feigin B., Usp. Math. Nauk, 43:2 (1988), 157 ; Kac V., Peterson P., MIT preprint 27/87, 1987 | MR | Zbl

[31] Bakas I., Khesin B., Kiritsis E., Berkeley preprint LBL-31303, 1991

[32] Treves F., Introduction to Pseudodifferential and Fourier Integral Operators, v. 1,2, Plenum, New York, 1980 | MR | Zbl

[33] Nissimov E., Pacheva S., Vaysburd I., Hebrew Univ. preprint. RI-1-92

[34] Dickey L., Soliton Equations and Hamiltonian Systems, World Sci., 1991e | MR | Zbl