On two mathematical problems of canonical quantization.~IV
Teoretičeskaâ i matematičeskaâ fizika, Tome 93 (1992) no. 2, pp. 249-263
Voir la notice de l'article provenant de la source Math-Net.Ru
A method for solving the problem of reconstructing a measure beginning with its logarithmic derivative is presented. The method completes that of solving the stochastic differential equation via Dirichlet forms proposed by S. Albeverio and M. Rockner. As a result one obtains the mathematical apparatus for the stochastic quantization. The apparatus is applied to prove the existence of the Feynman–Kac measure of the sine-Gordon and $\lambda \phi ^{2n}/(1+\kappa ^2\phi ^{2n})$-models. A synthesis of both mathematical problems of canonical quantization is obtained in the form of a second-order martingale problem for vacuum noise. It is shown that in stochastic mechanics the martingale problem is an analog of Newton's second law and enables us to find the Nelson's stochastic trajectories without determining the wave functions.
@article{TMF_1992_93_2_a4,
author = {A. I. Kirillov},
title = {On two mathematical problems of canonical {quantization.~IV}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {249--263},
publisher = {mathdoc},
volume = {93},
number = {2},
year = {1992},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1992_93_2_a4/}
}
A. I. Kirillov. On two mathematical problems of canonical quantization.~IV. Teoretičeskaâ i matematičeskaâ fizika, Tome 93 (1992) no. 2, pp. 249-263. http://geodesic.mathdoc.fr/item/TMF_1992_93_2_a4/