A new approach to BRST operator cohomologies: Exact results for the BRST-fock theories
Teoretičeskaâ i matematičeskaâ fizika, Tome 93 (1992) no. 2, pp. 342-353 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The modification of the BRST approach suggested by the authors and based on using the Lie superalgebra \hbox {$l\mkern 2mu(1,1)$} as the full algebra of the BRST symmetry is applied to the problem of calculating BRST operator cohomologies. The calculation is done for the class of BRST–Fock theories. The operator cohomologies are proved to be trivial. The result is interpreted as the analog of the no-ghost theorem on the level of observables.
@article{TMF_1992_93_2_a10,
     author = {S. S. Horuzhy and A. V. Voronin},
     title = {A~new approach to {BRST} operator cohomologies: {Exact} results for the {BRST-fock} theories},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {342--353},
     year = {1992},
     volume = {93},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1992_93_2_a10/}
}
TY  - JOUR
AU  - S. S. Horuzhy
AU  - A. V. Voronin
TI  - A new approach to BRST operator cohomologies: Exact results for the BRST-fock theories
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1992
SP  - 342
EP  - 353
VL  - 93
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1992_93_2_a10/
LA  - ru
ID  - TMF_1992_93_2_a10
ER  - 
%0 Journal Article
%A S. S. Horuzhy
%A A. V. Voronin
%T A new approach to BRST operator cohomologies: Exact results for the BRST-fock theories
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1992
%P 342-353
%V 93
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1992_93_2_a10/
%G ru
%F TMF_1992_93_2_a10
S. S. Horuzhy; A. V. Voronin. A new approach to BRST operator cohomologies: Exact results for the BRST-fock theories. Teoretičeskaâ i matematičeskaâ fizika, Tome 93 (1992) no. 2, pp. 342-353. http://geodesic.mathdoc.fr/item/TMF_1992_93_2_a10/

[1] Horuzhy S. S., Voronin A. V., “BRST and $l(1,1)$”, Rev. Math. Phys., 5:1 (1993), 191–208 | DOI | MR | Zbl

[2] Horuzhy S. S., Voronin A. V., Commun. Math. Phys., 123 (1989), 677–685 | DOI | MR | Zbl

[3] Henneaux M., “BRST symmetry in the classical and quantum theories of gauge systems”, Quantum mechanics of fundamental systems, v. 1 (Santiago, 1985), Ser. Cent. Estud. Cient. Santiago, Plenum, New York, 1988, 117–144 | MR

[4] Slavnov A. A., Phys. Lett. B, 217 (1989), 91–97 | DOI | MR

[5] Horuzhy S. S., Voronin A. V., J. Math. Phys., 33:8 (1992), 2823–2841 | DOI | MR | Zbl

[6] Voronin A. V., Horuzhy S. S., Theor. Math. Phys., 91 (1992), 3–16 (Russian) | DOI | MR

[7] Schwarz A. S., Mod. Phys. Lett., 4 (1989), 1891–1897 | DOI | MR