A new approach to BRST operator cohomologies: Exact results for the BRST-fock theories
Teoretičeskaâ i matematičeskaâ fizika, Tome 93 (1992) no. 2, pp. 342-353
Cet article a éte moissonné depuis la source Math-Net.Ru
The modification of the BRST approach suggested by the authors and based on using the Lie superalgebra \hbox {$l\mkern 2mu(1,1)$} as the full algebra of the BRST symmetry is applied to the problem of calculating BRST operator cohomologies. The calculation is done for the class of BRST–Fock theories. The operator cohomologies are proved to be trivial. The result is interpreted as the analog of the no-ghost theorem on the level of observables.
@article{TMF_1992_93_2_a10,
author = {S. S. Horuzhy and A. V. Voronin},
title = {A~new approach to {BRST} operator cohomologies: {Exact} results for the {BRST-fock} theories},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {342--353},
year = {1992},
volume = {93},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1992_93_2_a10/}
}
TY - JOUR AU - S. S. Horuzhy AU - A. V. Voronin TI - A new approach to BRST operator cohomologies: Exact results for the BRST-fock theories JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1992 SP - 342 EP - 353 VL - 93 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_1992_93_2_a10/ LA - ru ID - TMF_1992_93_2_a10 ER -
S. S. Horuzhy; A. V. Voronin. A new approach to BRST operator cohomologies: Exact results for the BRST-fock theories. Teoretičeskaâ i matematičeskaâ fizika, Tome 93 (1992) no. 2, pp. 342-353. http://geodesic.mathdoc.fr/item/TMF_1992_93_2_a10/
[1] Horuzhy S. S., Voronin A. V., “BRST and $l(1,1)$”, Rev. Math. Phys., 5:1 (1993), 191–208 | DOI | MR | Zbl
[2] Horuzhy S. S., Voronin A. V., Commun. Math. Phys., 123 (1989), 677–685 | DOI | MR | Zbl
[3] Henneaux M., “BRST symmetry in the classical and quantum theories of gauge systems”, Quantum mechanics of fundamental systems, v. 1 (Santiago, 1985), Ser. Cent. Estud. Cient. Santiago, Plenum, New York, 1988, 117–144 | MR
[4] Slavnov A. A., Phys. Lett. B, 217 (1989), 91–97 | DOI | MR
[5] Horuzhy S. S., Voronin A. V., J. Math. Phys., 33:8 (1992), 2823–2841 | DOI | MR | Zbl
[6] Voronin A. V., Horuzhy S. S., Theor. Math. Phys., 91 (1992), 3–16 (Russian) | DOI | MR
[7] Schwarz A. S., Mod. Phys. Lett., 4 (1989), 1891–1897 | DOI | MR